Bokar JA et al (1994) Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J Biol Chem 269(26):17697–17704
Article CAS PubMed Google Scholar
Li M et al (2021) The role of N6-methyladenosine mRNA in the tumor microenvironment. Biochim Biophys Acta Rev Cancer 1875(2):188522
Article MathSciNet CAS PubMed Google Scholar
Yang Y et al (2018) Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res 28(6):616–624
Article CAS PubMed PubMed Central Google Scholar
Meyer KD et al (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149(7):1635–1646
Article CAS PubMed PubMed Central Google Scholar
Dominissini D et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485(7397):201–206
Article CAS PubMed Google Scholar
Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta Mol Cell Res 1695(1–3):55–72
Zhou H et al (2021) The RNA m6A writer METTL14 in cancers: roles, structures, and applications. Biochim Biophys Acta Rev Cancer 1876(2): 188609. https://doi.org/10.1016/j.bbcan.2021.188609
Pendleton KE et al (2017) The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169(5):824–835. e14
Article CAS PubMed PubMed Central Google Scholar
Zaccara S, Ries RJ, Jaffrey SR (2019) Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol 20(10):608–624
Article CAS PubMed Google Scholar
Lee Y et al (2020) Molecular mechanisms driving mRNA degradation by m6A modification. Trends Genet 36(3):177–188
Article CAS PubMed Google Scholar
Wu B et al (2017) Readers, writers and erasers of N6-methylated adenosine modification. Curr Opin Struct Biol 47:67–76
Toh JD et al (2020) Distinct RNA N-demethylation pathways catalyzed by nonheme iron ALKBH5 and FTO enzymes enable regulation of formaldehyde release rates. Proc Natl Acad Sci 117(41):25284–25292
Article CAS PubMed PubMed Central Google Scholar
Zhao Y et al (2020) m6A-binding proteins: the emerging crucial performers in epigenetics. J Hematol Oncol 13(1):1–14
Article MathSciNet Google Scholar
Wang X et al (2015) N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161(6):1388–1399
Article CAS PubMed PubMed Central Google Scholar
Liao S, Sun H, Xu C (2018) YTH domain: a family of N6-methyladenosine (m6A) readers. Genomics Proteomics Bioinformatics 16(2):99–107
Article CAS PubMed PubMed Central Google Scholar
Huang H, Weng H, Chen J (2020) m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell 37(3):270–288
Article CAS PubMed PubMed Central Google Scholar
Zaccara S, Jaffrey SR (2020) A unified model for the function of YTHDF proteins in regulating m6A-modified mRNA. Cell 181(7):1582–1595. e18
Article CAS PubMed PubMed Central Google Scholar
Xiao W et al (2016) Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol Cell 61(4):507–519
Article CAS PubMed Google Scholar
Huang H et al (2018) Recognition of RNA N 6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 20(3):285–295
Article CAS PubMed PubMed Central Google Scholar
Liu N et al (2015) N 6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature 518(7540):560–564
Article CAS PubMed PubMed Central Google Scholar
Wang P, Doxtader KA, Nam Y (2016) Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell 63(2):306–317
Article CAS PubMed PubMed Central Google Scholar
Cui Q et al (2017) m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep 18(11):2622–2634
Article CAS PubMed PubMed Central Google Scholar
Helzer KT et al (2015) Ubiquitylation of nuclear receptors: new linkages and therapeutic implications. J Mol Endocrinol 54(3):R151
Article CAS PubMed PubMed Central Google Scholar
Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67(1):425–479
Article CAS PubMed Google Scholar
Lub S et al (2016) Novel strategies to target the ubiquitin proteasome system in multiple myeloma. Oncotarget 7(6):6521
Ristic G, Tsou W-L, Todi SV (2014) An optimal ubiquitin-proteasome pathway in the nervous system: the role of deubiquitinating enzymes. Front Mol Neurosci 7:72. https://doi.org/10.3389/fnmol.2014.00072
He S, Zhang L (2015) Research progress in linear ubiquitin modification. Yi Chuan 37(9):911–917
Harhaj EW, Dixit VM (2011) Deubiquitinases in the regulation of NF-κB signaling. Cell Res 21(1):22–39
Article CAS PubMed Google Scholar
Shaid S et al (2013) Ubiquitination and selective autophagy. Cell Death Differ 20(1):21–30
Article CAS PubMed Google Scholar
Komander D, Clague MJ, Urbé S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10(8):550–563
Article CAS PubMed Google Scholar
Pitluk ZW et al (1995) Novel CDC34 (UBC3) ubiquitin-conjugating enzyme mutants obtained by charge-to-alanine scanning mutagenesis. Mol Cell Biol 15(3):1210–1219
Article CAS PubMed PubMed Central Google Scholar
Adams J (2003) The proteasome: structure, function, and role in the cell. Cancer Treat Rev 29:3–9
Article CAS PubMed Google Scholar
Mizushima N et al (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152(4):657–668
Article CAS PubMed PubMed Central Google Scholar
Sou Y-S et al (2008) The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19(11):4762–4775
Article CAS PubMed PubMed Central Google Scholar
Hattori N, Mizuno Y (2004) Pathogenetic mechanisms of parkin in Parkinson’s disease. Lancet 364(9435):722–724
Article CAS PubMed Google Scholar
Xu P et al (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137(1):133–145
Article CAS PubMed PubMed Central Google Scholar
Zhang M et al (2005) Chaperoned ubiquitylation—crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol Cell 20(4):525–538
Article CAS PubMed Google Scholar
Haglund K, Di Fiore PP, Dikic I (2003) Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem Sci 28(11):598–604
Article CAS PubMed Google Scholar
Zhao S, Ulrich HD (2010) Distinct consequences of posttranslational modification by linear versus K63-linked polyubiquitin chains. Proc Natl Acad Sci 107(17):7704–7709
Comments (0)