Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:15056. https://doi.org/10.1038/nrdp.2015.56.
Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, et al. Alzheimer disease. Nat Rev Dis Primers. 2021;7:33. https://doi.org/10.1038/s41572-021-00269-y.
Article PubMed PubMed Central Google Scholar
National Institute on Aging (NIA). (2017) What happens to the brain in Alzheimer’s disease? 2017. https://www.nia.nih.gov/health/what-happens-brain-alzheimers-disease.
DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14:32. https://doi.org/10.1186/s13024-019-0333-5.
Article PubMed PubMed Central Google Scholar
Chen ZR, Huang JB, Yang SL, Hong FF. Role of cholinergic signaling in Alzheimer’s disease. Molecules. 2022;27:1816. https://doi.org/10.3390/MOLECULES27061816.
Article CAS PubMed PubMed Central Google Scholar
Puangmalai N, Thangnipon W, Soi-Ampornkul R, Suwanna N, Tuchinda P, Nobsathian S. Neuroprotection of N-benzylcinnamide on scopolamine-induced cholinergic dysfunction in human SH-SY5Y neuroblastoma cells. Neural Regen Res. 2017;12:1492–8. https://doi.org/10.4103/1673-5374.215262.
Article CAS PubMed PubMed Central Google Scholar
Thompson KJ, Tobin AB. Crosstalk between the M1 muscarinic acetylcholine receptor and the endocannabinoid system: a relevance for Alzheimer’s disease? Cell Signal. 2020;70:109545. https://doi.org/10.1016/J.CELLSIG.2020.109545.
Article CAS PubMed PubMed Central Google Scholar
Bekdash RA, Matsukawa N. The cholinergic system, the adrenergic system and the neuropathology of Alzheimer’s disease. Int J Mol Sci. 2021;22:1273. https://doi.org/10.3390/ijms22031273.
Article CAS PubMed PubMed Central Google Scholar
Padda IS, Parmar M. Aducanumab—NCBI Bookshelf. StatPearls, Treasure Island (FL); 2023. https://www.ncbi.nlm.nih.gov/books/NBK573062/.
van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388:9–21. https://doi.org/10.1056/NEJMoa2212948.
Ha ZY, Mathew S, Yeong KY. Butyrylcholinesterase: a multifaceted pharmacological target and tool. Curr Protein Pept Sci. 2020;21:99–109. https://doi.org/10.2174/1389203720666191107094949.
Article CAS PubMed Google Scholar
Chatonnet A, Lockridge O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J. 1989;260:625–34. https://doi.org/10.1042/bj2600625.
Article CAS PubMed PubMed Central Google Scholar
Shaji KS, Smitha K, Praveen Lal K, Prince MJ. Caregivers of people with Alzheimer’s disease: a qualitative study from the Indian 10/66 Dementia Research Network. Int J Geriatr Psychiatry. 2003;18:1–6. https://doi.org/10.1002/gps.649.
Article CAS PubMed Google Scholar
Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent. Proc Natl Acad Sci USA. 2005;102:17213–8. https://doi.org/10.1073/pnas.0508575102.
Article CAS PubMed PubMed Central Google Scholar
Zhou S, Huang G. The biological activities of butyrylcholinesterase inhibitors. Biomed Pharmacother. 2022;146:112556. https://doi.org/10.1016/j.biopha.2021.112556.
Article CAS PubMed Google Scholar
Mesulam MM, Geula C. Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. Ann Neurol. 1994;36:722–7. https://doi.org/10.1002/ana.410360506.
Article CAS PubMed Google Scholar
Diamant S, Podoly E, Friedler A, Ligumsky H, Livnah O, Soreq H. Butyrylcholinesterase attenuates amyloid fibril formation in vitro. Proc Natl Acad Sci. 2006;103:8628–33. https://doi.org/10.1073/pnas.0602922103.
Article CAS PubMed PubMed Central Google Scholar
Li S, Li AJ, Travers J, Xu T, Sakamuru S, Klumpp-Thomas C, et al. Identification of compounds for butyrylcholinesterase inhibition. SLAS Discov. 2021;26:1355–64. https://doi.org/10.1177/24725552211030897.
Article CAS PubMed PubMed Central Google Scholar
Ha ZY, Ong HC, Oo CW, Yeong KY. Synthesis, molecular docking, and biological evaluation of benzimidazole derivatives as selective butyrylcholinesterase inhibitors. Curr Alzheimer Res. 2020;17:1177–85. https://doi.org/10.2174/1567205018666210218151228.
Article CAS PubMed Google Scholar
Yoon YK, Ali MA, Wei AC, Choon TS, Khaw KY, Murugaiyah V, et al. Synthesis, characterization, and molecular docking analysis of novel benzimidazole derivatives as cholinesterase inhibitors. Bioorg Chem. 2013;49:33–9. https://doi.org/10.1016/j.bioorg.2013.06.008.
Article CAS PubMed Google Scholar
González-Naranjo P, Pérez C, González-Sánchez M, Gironda-Martínez A, Ulzurrun E, Bartolomé F, et al. Multitarget drugs as potential therapeutic agents for alzheimer’s disease. A new family of 5-substituted indazole derivatives as cholinergic and BACE1 inhibitors. J Enzyme Inhib Med Chem. 2022;37:2348–56. https://doi.org/10.1080/14756366.2022.2117315.
Article CAS PubMed PubMed Central Google Scholar
Ren Y, Wang Y, Li G, Zhang Z, Ma L, Cheng B, et al. Discovery of novel benzimidazole and indazole analogues as tubulin polymerization inhibitors with potent anticancer activities. J Med Chem. 2021;64:4498–515. https://doi.org/10.1021/acs.jmedchem.0c01837.
Article CAS PubMed Google Scholar
Solano LN, Nelson GL, Ronayne CT, Jonnalagadda S, Jonnalagadda SK, Kottke K, et al. Synthesis, in vitro, and in vivo evaluation of novel N-phenylindazolyl diarylureas as potential anti-cancer agents. Sci Rep. 2020;10:17969. https://doi.org/10.1038/s41598-020-74572-1.
Article CAS PubMed PubMed Central Google Scholar
Lee J, Kim J, Hong VS, Park JW. Synthesis and anti-proliferative activity evaluation of N3-acyl-N5-aryl-3,5-diaminoindazole analogues as anti-head and neck cancer agent. DARU J Pharm Sci. 2014;22:1–9. https://doi.org/10.1186/2008-2231-22-4.
Antonysamy S, Hirst G, Park F, Sprengeler P, Stappenbeck F, Steensma R, et al. Fragment-based discovery of JAK-2 inhibitors. Bioorg Med Chem Lett. 2009;19:279–82. https://doi.org/10.1016/j.bmcl.2008.08.064.
Article CAS PubMed Google Scholar
Darvesh S, Hopkins DA. Differential distribution of butyrylcholinesterase and acetylcholinesterase in the human thalamus. J Comp Neurol. 2003;463:25–43. https://doi.org/10.1002/cne.10751.
Article CAS PubMed Google Scholar
Tasker A, Perry EK, Ballard CG. Butyrylcholinesterase: impact on symptoms and progression of cognitive impairment. Expert Rev Neurother. 2005;5:101–6. https://doi.org/10.1586/14737175.5.1.101.
Article CAS PubMed Google Scholar
Guillozet AL, Smiley JF, Mash DC, Mesulam MM. Butyrylcholinesterase in the life cycle of amyloid plaques. Ann Neurol. 1997;42:909–18. https://doi.org/10.1002/ana.410420613.
Article CAS PubMed Google Scholar
Changiz G, Marsel MM. Cholinesterases and the pathology of Alzheimer disease. Alzheimer Dis Assoc Disord. 1995;9:23–8.
Li B, Duysen EG, Lockridge O. The butyrylcholinesterase knockout mouse is obese on a high-fat diet. Chem Biol Interact. 2008;175:88–91. https://doi.org/10.1016/j.cbi.2008.03.009.
Article CAS PubMed Google Scholar
Acar Cevik U, Saglik B, Levent S, Osmaniye D, Kaya Cavuşoglu B, Ozkay Y, et al. Synthesis and AChE-inhibitory activity of new benzimidazole derivatives. Molecules. 2019;24:861. https://doi.org/10.3390/molecules24050861.
Article CAS PubMed PubMed Central Google Scholar
Vyas S, Beck JM, Xia S, Zhang J, Hadad CM. Butyrylcholinesterase and G116H, G116S, G117H, G117N, E197Q and G117H/E197Q mutants: a molecular dynamics study. Chem Biol Interact. 2010;187:241–5. https://doi.org/10.1016/j.cbi.2010.04.004.
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Kua J, McCammon JA. Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: an ab initio QM/MM study. J Am Chem Soc. 2002;124:10572–7. https://doi.org/10.1021/ja020243m.
Article CAS PubMed Google Scholar
Fukuda T, Ueda K, Ishiyama T, Goto R, Muramatsu S, Hashimoto M, et al. Synthesis and SAR studies of 3,6-disubstituted indazole derivatives as potent hepcidin production inhibitors. Bioorg Med Chem Lett. 2017;27:2148–52. https://doi.org/10.1016/J.BMCL.2017.03.056.
Comments (0)