World Health Organization. Neglected tropical diseases. www.who.int/health-topics/neglected-tropical-diseases#tab=tab_2 (Accessed Mar 16, 2023).
Büscher P, Cecchi G, Jamonneau V, Priotto G. Human African Trypanosomiasis. Lancet. 2017;390:2397–409.
Gao JM, Qian ZY, Hide G, Lai DH, Lun ZR, Wu ZD. Human African Trypanosomiasis: the current situation in endemic regions and the risks for non-endemic regions from imported cases. Parasitology. 2020;147:922–31.
Article PubMed PubMed Central Google Scholar
Simarro PP, Cecchi G, Paone M, Franco JR, Diarra A, Ruiz JA, et al. The Atlas of Human African Trypanosomiasis: a contribution to global mapping of neglected tropical diseases. Int J Health Geogr 2010;9:57.
Article PubMed PubMed Central Google Scholar
Kennedy PGE. Update on Human African Trypanosomiasis (Sleeping Sickness). J Neurol 2019;266:2334–7.
Article CAS PubMed Google Scholar
Fairlamb AH, Bowman IBR. Trypanosoma brucei: suramin and other trypanocidal compounds’ effects on sn-glycerol-3-phosphate oxidase. Exp Parasitol 1977;43:353–61.
Article CAS PubMed Google Scholar
Fairlamb AH, Bowman IB. Uptake of the trypanocidal drug suramin by bloodstream forms of Trypanosoma brucei and its effect on respiration and growth rate in vivo. Mol Biochem Parasitol 1980;1:315–33.
Article CAS PubMed Google Scholar
Willson M, Callens M, Kuntz DA, Perié J, Opperdoes FR. Synthesis and activity of inhibitors highly specific for the glycolytic enzymes from Trypanosoma brucei. Mol Biochem Parasitol 1993;59:201–10.
Article CAS PubMed Google Scholar
Morty RE, Troeberg L, Pike RN, Jones R, Nickel P, Lonsdale-Eccles JD, et al. A trypanosome oligopeptidase as a target for the trypanocidal agents pentamidine, diminazene and suramin. FEBS Lett. 1998;433:251–6.
Article CAS PubMed Google Scholar
Zimmermann S, Hall L, Riley S, Sørensen J, Amaro RE, Schnaufer A. A novel high-throughput activity assay for the Trypanosoma brucei editosome enzyme REL1 and other RNA ligases. Nucleic Acids Res. 2016;44:e24.
Albisetti A, Hälg S, Zoltner M, Mäser P, Wiedemar N. Suramin action in African trypanosomes involves a RuvB-like DNA helicase. Int J Parasitol Drugs Drug Resist. 2023;23:44–53.
Article CAS PubMed PubMed Central Google Scholar
Shapiro TA, Englund PT. Selective cleavage of kinetoplast DNA minicircles promoted by antitrypanosomal drugs. Proc Natl Acad Sci USA. 1990;87:950–4.
Article ADS CAS PubMed PubMed Central Google Scholar
Baker N, Koning HP, Mäser P, Horn D. Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. Trends Parasitol. 2013;29:110–8.
Article CAS PubMed Google Scholar
Fairlamb AH, Henderson GB, Cerami A. Trypanothione is the primary target for arsenical drugs against African trypanosomes. Proc Natl Acad Sci USA. 1989;86:2607–11.
Article ADS CAS PubMed PubMed Central Google Scholar
Vincent IM, Creek D, Watson DG, Kamleh MA, Woods DJ, Wong PE, et al. A molecular mechanism for eflornithine resistance in African trypanosomes. PLoS Pathog. 2010;6:e1001204.
Article PubMed PubMed Central Google Scholar
Fairlamb AH, Henderson GB, Bacchi CJ, Cerami A. In vivo effects of difluoromethylornithine on trypanothione and polyamine levels in bloodstream forms of Trypanosoma brucei. Mol Biochem Parasitol. 1987;24:185–91.
Article CAS PubMed Google Scholar
Poulin R, Lu L, Ackermann B, Bey P, Pegg AE. Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by alpha-difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding sites. J Biol Chem. 1992;267:150–8.
Article CAS PubMed Google Scholar
Keating J, Yukich JO, Sutherland CS, Woods G, Tediosi F. Human African Trypanosomiasis prevention, treatment and control costs: a systematic review. Acta Trop. 2015;150:4–13.
US National Library of medicine. Clinical trials home page. Bethesda (MD); National Library of Medicine. clinicaltrials.gov/ (Accessed Mar 13, 2023).
Mesu VKBK, Kalonji WM, Bardonneau C, Mordt OV, Blesson S, Simon F, et al. Oral fexinidazole for late-stage African trypanosoma brucei gambiense trypanosomiasis: a pivotal multicentre, randomised, non-inferiority trial. Lancet. 2018;391:144–54.
Article CAS PubMed Google Scholar
MEROPS, the peptidase database. www.ebi.ac.uk/merops/ (Accessed Mar 14, 2023).
Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:D624–D632.
Article CAS PubMed Google Scholar
Steverding D, Caffrey CR. Should the enzyme name ‘Rhodesain’ be discontinued? Mol Biochem Parasitol. 2021;245:111395.
Article CAS PubMed Google Scholar
Ettari R, Previti S, Tamborini L, Cullia G, Grasso S, Zappalà M. The inhibition of cysteine proteases Rhodesain and TbCatB: a valuable approach to treat human African Trypanosomiasis. Mini Rev Med Chem. 2016;16:1374–91.
Article CAS PubMed Google Scholar
Lonsdale-Eccles JD, Grab DJ. Trypanosome hydrolases and the blood-brain barrier. Trends Parasitol. 2002;18:17–19.
Article CAS PubMed Google Scholar
Nikolskaia OV, Lima APCDA, Kim YV, Lonsdale-Eccles JD, Fukuma T, Scharfstein J, et al. Blood-brain barrier traversal by African Trypanosomes requires calcium signaling induced by parasite cysteine protease. J Clin Invest. 2006;116:2739–47.
Article CAS PubMed PubMed Central Google Scholar
Grab DJ, Garcia-Garcia JC, Nikolskaia OV, Kim YV, Brown A, Pardo CA, et al. Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells. PLoS Negl Trop Dis. 2009;3:e479.
Article PubMed PubMed Central Google Scholar
Steverding D, Sexton DW, Wang X, Gehrke SS, Wagner GK, Caffrey CR. Trypanosoma Brucei: chemical evidence that cathepsin L is essential for survival and a relevant drug target. Int J Parasitol. 2012;42:481–8.
Article CAS PubMed Google Scholar
Ettari R, Tamborini L, Angelo IC, Micale N, Pinto A, Micheli C, et al. Inhibition of Rhodesain as a novel therapeutic modality for human African Trypanosomiasis. J Med Chem. 2013;56:5637–58.
Article CAS PubMed Google Scholar
Johé P, Jaenicke E, Neuweiler H, Schirmeister T, Kersten C, Hellmich UA. Structure, interdomain dynamics, and PH-dependent autoactivation of pro-Rhodesain, the main lysosomal cysteine protease from African Trypanosomes. J Biol Chem. 2021;296:100565.
Article PubMed PubMed Central Google Scholar
Nascimento IJ, dos S, Aquino TM, de; Silva-Júnior EF. da. Cruzain and Rhodesain inhibitors: last decade of advances in seeking for new compounds against American and African Trypanosomiases. Curr Top Med Chem. 2021;21:1871–99.
Alvarez VE, Iribarren PA, Niemirowicz GT, Cazzulo JJ. Update on relevant trypanosome peptidases: validated targets and future challenges. Biochim Biophys Acta - Proteins Proteom. 2021;1869:140577.
Article CAS PubMed Google Scholar
Petri GL, Di Martino S, De Rosa M. Peptidomimetics: an overview of recent medicinal chemistry efforts toward the discovery of novel small. Mol Inhib J Med Chem. 2022;65:7438–75.
El-Faham A, de la Torre BG, Albericio F. Latest advances on synthesis, purification, and characterization of peptides and their applications. Appl Sci. 2021;11:5593.
Palmer JT, Rasnick D, Klaus JL, Bromme D. Vinyl sulfones as mechanism-based cysteine protease inhibitors. J Med Chem. 1995;38:3193–6.
Article CAS PubMed Google Scholar
Kerr ID, Lee JH, Farady CJ, Marion R, Rickert M, Sajid M, et al. Vinyl sulfones as antiparasitic agents and a structural basis for drug design. J Biol Chem 2009;284:25697–703.
Article CAS PubMed PubMed Central Google Scholar
Royo S, Rodríguez S, Schirmeister T, Kesselring J, Kaiser M, González FV. Dipeptidyl enoates as potent rhodesain inhibitors that display a dual mode of action. ChemMedChem. 2015;10:1484–7.
Article CAS PubMed Google Scholar
Royo S, Schirmeister T, Kaiser M, Jung S, Rodríguez S, Bautista JM, et al. Antiprotozoal and cysteine proteases inhibitory activity of dipeptidyl enoates. Bioorg Med Chem. 2018;26:4624–34.
Comments (0)