Wenk M. The emerging field of lipidomics. Nat Rev Drug Discov. 2005;4:594–610. https://doi.org/10.1038/nrd1776.
Article CAS PubMed Google Scholar
Han X, Gross RW. The foundations and development of lipidomics. J Lipid Res. 2022;63(2): 100164. https://doi.org/10.1016/j.jlr.2021.100164.
Article CAS PubMed Google Scholar
Züllig T, Trötzmüller M, Köfeler HC. Lipidomics from sample preparation to data analysis: a primer. Anal Bioanal Chem. 2020;412:2191–209. https://doi.org/10.1007/s00216-019-02241-y.
Article CAS PubMed Google Scholar
Cajka T, Fiehn O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Analyt Chem. 2014;61:192–206. https://doi.org/10.1016/j.trac.2014.04.017.
Article CAS PubMed PubMed Central Google Scholar
Xuan Q, Hu C, Yu D, Wang L, Zhou Y, Zhao X, Li Q, Hou X, Xu G. Development of a high coverage pseudotargeted lipidomics method based on ultra-high performance liquid chromatography-mass spectrometry. Anal Chem. 2018;90(12):7608–16. https://doi.org/10.1021/acs.analchem.8b01331.
Article CAS PubMed PubMed Central Google Scholar
Xu T, Hu C, Xuan Q, Xu G. Recent advances in analytical strategies for mass spectrometry-based lipidomics. Anal Chim Acta. 2020;1137:156–69. https://doi.org/10.1016/j.aca.2020.09.060.
Article CAS PubMed PubMed Central Google Scholar
Kostidis S, Sánchez-López E, Giera M. Lipidomics analysis in drug discovery and development. Curr Opin Chem Biol. 2023;72: 102256. https://doi.org/10.1016/j.cbpa.2022.102256.
Article CAS PubMed Google Scholar
Zhang Y, Xie Y, Lv W, Hu C, Xu T, Liu X, Zhang R, Xu G, Xia Y, Zhao X. A high throughput lipidomics method and its application in atrial fibrillation based on 96-well plate pretreatment and liquid chromatography-mass spectrometry. J Chromatogr A. 2021;1651: 462271. https://doi.org/10.1016/j.chroma.2021.462271.
Article CAS PubMed Google Scholar
Jung HR, Sylvänne T, Koistinen KM, Tarasov K, Kauhanen D, Ekroos K. High throughput quantitative molecular lipidomics. Biochim Biophys Acta. 2011;1811(11):925–34. https://doi.org/10.1016/j.bbalip.2011.06.025.
Article CAS PubMed Google Scholar
Paglia G, Kliman M, Claude E, Scoot G, Astarita G. Applications of ion-mobility mass spectrometry for lipid analysis. Anal Bioanal Chem. 2015;407:4995–5007. https://doi.org/10.1007/s00216-015-8664-8.
Article CAS PubMed Google Scholar
Hinz C, Liggi S, Griffin JL. The potential of ion mobility mass spectrometry for high-throughput and high-resolution lipidomics. Curr Opin Chem Biol. 2018;42:42–50. https://doi.org/10.1016/j.cbpa.2017.10.018.
Article CAS PubMed Google Scholar
Vasilopoulou CG, Sulek K, Brunner AD, Meitei N, Schweiger-Hufnagel U, Meyer SW, Barsch A, Mann M, Meier F. Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nat Commun. 2020;11:331. https://doi.org/10.1038/s41467-019-14044-x.
Article CAS PubMed PubMed Central Google Scholar
Meier F, Park MA, Mann M. Trapped ion mobility spectrometry and parallel accumulation-serial fragmentation in proteomics. Mol Cell Proteomics. 2021;20: 100138. https://doi.org/10.1016/j.mcpro.2021.100138.
Article CAS PubMed PubMed Central Google Scholar
Merciai F, Musella S, Sommella E, Bertamino A, D’Ursi AM, Campiglia P. Development and application of a fast ultra-high performance liquid chromatography-trapped ion mobility mass spectrometry method for untargeted lipidomics. J Chromatogr A. 2022;1673: 463124. https://doi.org/10.1016/j.chroma.2022.463124.
Article CAS PubMed Google Scholar
Skowronek P, Thielert M, Voytik E, Tanzer MC, Hansen FM, Willems S, Karayel O, Brunner AD, Meier F, Mann M. Rapid and in-depth coverage of the (phospho-)proteome with deep libraries and optimal window design for dia-PASEF. Mol Cell Proteomics. 2022;21(9): 100279. https://doi.org/10.1016/j.mcpro.2022.100279.
Article CAS PubMed PubMed Central Google Scholar
Chen X, Yin Y, Luo M, Zhou Z, Cai Y, Zhu ZJ. Trapped ion mobility spectrometry-mass spectrometry improves the coverage and accuracy of four-dimensional untargeted lipidomics. Anal Chim Acta. 2022;1210: 339886. https://doi.org/10.1016/j.aca.2022.339886.
Article CAS PubMed Google Scholar
Lerner R, Baker D, Schwitter C, Neuhaus S, Hauptmann T, Post JM, Kramer S, Bindila L. Four-dimensional trapped ion mobility spectrometry lipidomics for high throughput clinical profiling of human blood samples. Nat Commun. 2023;14(1):937. https://doi.org/10.1038/s41467-023-36520-1.
Article CAS PubMed PubMed Central Google Scholar
Ciccarelli M, Merciai F, Carrizzo A, Sommella E, Di Pietro P, Caponigro V, Salviati E, Musella S, Sarno VD, Rusciano M, Toni AL, Iesu P, Izzo C, Schettino G, Conti V, Venturini E, Vitale C, Scarpati G, Bonadies D, Rispoli A, Polverino B, Poto S, Pagliano P, Piazza O, Licastro D, Vecchione C, Campiglia P. Untargeted lipidomics reveals specific lipid profiles in COVID-19 patients with different severity from Campania region (Italy). J Pharm Biomed Anal. 2022;217: 114827. https://doi.org/10.1016/j.jpba.2022.114827.
Article CAS PubMed PubMed Central Google Scholar
Tumanov S, Kamphorst JJ. Recent advances in expanding the coverage of the lipidome. Curr Opin Biotechnol. 2017;43:127–33. https://doi.org/10.1016/j.copbio.2016.11.008.
Article CAS PubMed PubMed Central Google Scholar
Zhang F, Guo S, Zhang M, Zhang Z, Guo Y. Characterizing ion mobility and collision cross section of fatty acids using electrospray ion mobility mass spectrometry. J Mass Spectrom. 2015;50(7):906–13. https://doi.org/10.1002/jms.3600.
Article CAS PubMed Google Scholar
Xiang H, Zhang B, Wang Y, Xu N, Zhang F, Luo R, Ji M, Ding C. Region-resolved multi-omics of the mouse eye. Cell Rep. 2023;42(2): 112121. https://doi.org/10.1016/j.celrep.2023.112121.
Article CAS PubMed Google Scholar
Rust BM, Picklo MJ, Yan L, Mehus AA, Zeng H. Time-restricted feeding modifies the fecal lipidome and the gut microbiota. Nutrients. 2023;15(7):1562. https://doi.org/10.3390/nu15071562.
Article CAS PubMed PubMed Central Google Scholar
dkowiak J, Jirásko R, Kolářová D, Bártl J, Hájek T, Antonelli M, Vaňková Z, Wolrab D, Hrstka R, Študentová H, Melichar B, Pešková K, Holčapek M. Robust and high-throughput lipidomic quantitation of human blood samples using flow injection analysis with tandem mass spectrometry for clinical use. Anal Bioanal Chem. 2023;415(5):935-951. https://doi.org/10.1007/s00216-022-04490-w.
Cajka T, Smilowitz JT, Fiehn O. Validating quantitative untargeted lipidomics across nine liquid chromatography-high-resolution mass spectrometry platforms. Anal Chem. 2017;89(22):12360–8. https://doi.org/10.1021/acs.analchem.7b03404.
Article CAS PubMed Google Scholar
Koelmel JP, Cochran JA, Ulmer CZ, Levy AJ, Patterson RE, Olsen BC, Yost RA, Bowden JA, Garrett TJ. Software tool for internal standard based normalization of lipids, and effect of data-processing strategies on resulting values. BMC Bioinformatics.2019;20(1): 217. https://doi.org/10.1186/s12859-019-2803-8.
Bartosova Z, Gonzalez SV, Voigt A, Bruheim P. High throughput semiquantitative UHPSFC-MS/MS lipid profiling and lipid class determination. J Chromatogr Sci. 2021;59(7):670–80. https://doi.org/10.1093/chromsci/bmaa121.
Article CAS PubMed PubMed Central Google Scholar
Drotleff B, Illison J, Schlotterbeck J, Lukowski R, Lämmerhofer M. Comprehensive lipidomics of mouse plasma using class-specific surrogate calibrants and SWATH acquisition for large-scale lipid quantification in untargeted analysis. Anal Chim Acta. 2019;1086:90–102. https://doi.org/10.1016/j.aca.2019.08.030.
Article CAS PubMed Google Scholar
Choi J, Yin T, Shinozaki K, Lampe JW, Stevens JF, Becker LB, Kim J. Comprehensive analysis of phospholipids in the brain, heart, kidney, and liver: brain phospholipids are least enriched with polyunsaturated fatty acids. Mol Cell Biochem. 2018;442(1–2):187–201. https://doi.org/10.1007/s11010-017-3203-x.
Comments (0)