Pocevičiūtė D, Nuñez-Diaz C, Roth B, Janelidze S, Giannisis A, Hansson O, Wennström M (2022) Increased plasma and brain immunoglobulin A in Alzheimer's disease is lost in apolipoprotein E ε4 carriers. Alzheimers Res Ther 14(1):117. https://doi.org/10.1186/s13195-022-01062-z
Article CAS PubMed PubMed Central Google Scholar
Li ZL, Ma HT, Wang M, Qian YH (2022) Research trend of microbiota-gut-brain axis in Alzheimer's disease based on CiteSpace (2012-2021): A bibliometrics analysis of 608 articles. Front Aging Neurosci 14:1036120. https://doi.org/10.3389/fnagi.2022.1036120
Article PubMed PubMed Central Google Scholar
Wiatrak B, Balon K, Jawień P, Bednarz D, Jęśkowiak I, Szeląg A (2022) The role of the microbiota-gut-brain axis in the development of Alzheimer's disease. Int J Mol Sci 23(9). https://doi.org/10.3390/ijms23094862
Hao W, Hao C, Wu C, Xu Y, Jin C (2022) Aluminum induced intestinal dysfunction via mechanical, immune, chemical and biological barriers. Chemosphere 288(Pt 2):132556. https://doi.org/10.1016/j.chemosphere.2021.132556
Article CAS PubMed Google Scholar
Martel J, Chang SH, Ko YF, Hwang TL, Young JD, Ojcius DM (2022) Gut barrier disruption and chronic disease. Trends Endocrinol. Metab: TEM 33(4):247–265. https://doi.org/10.1016/j.tem.2022.01.002
Article CAS PubMed Google Scholar
Yuan S, Yang J, Jian Y, Lei Y, Yao S, Hu Z, Liu X, Tang C, Liu W (2022) Treadmill exercise modulates intestinal microbes and suppresses LPS displacement to alleviate neuroinflammation in the brains of APP/PS1 mice. Nutrients 14(19). https://doi.org/10.3390/nu14194134
Wang X, Liu GJ, Gao Q, Li N, Wang RT (2020) C-type lectin-like receptor 2 and zonulin are associated with mild cognitive impairment and Alzheimer's disease. Acta Neurol Scand 141(3):250–255. https://doi.org/10.1111/ane.13196
Article CAS PubMed Google Scholar
de Lau W, Kujala P, Schneeberger K, Middendorp S, Li VS, Barker N, Martens A, Hofhuis F, DeKoter RP, Peters PJ, Nieuwenhuis E, Clevers H (2012) Peyer's patch M cells derived from Lgr5(+) stem cells require SpiB and are induced by RankL in cultured "miniguts". Mol Cell Biol 32(18):3639–3647. https://doi.org/10.1128/mcb.00434-12
Article PubMed PubMed Central Google Scholar
Rios D, Wood MB, Li J, Chassaing B, Gewirtz AT, Williams IR (2016) Antigen sampling by intestinal M cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria. Mucosal Immunol 9(4):907–916. https://doi.org/10.1038/mi.2015.121
Article CAS PubMed Google Scholar
Kimura S, Kobayashi N, Nakamura Y, Kanaya T, Takahashi D, Fujiki R, Mutoh M, Obata Y, Iwanaga T, Nakagawa T, Kato N, Sato S, Kaisho T, Ohno H, Hase K (2019) Sox8 is essential for M cell maturation to accelerate IgA response at the early stage after weaning in mice. J Exp Med 216(4):831–846. https://doi.org/10.1084/jem.20181604
Article CAS PubMed PubMed Central Google Scholar
Kanaya T, Sakakibara S, Jinnohara T, Hachisuka M, Tachibana N, Hidano S, Kobayashi T, Kimura S, Iwanaga T, Nakagawa T, Katsuno T, Kato N, Akiyama T, Sato T, Williams IR, Ohno H (2018) Development of intestinal M cells and follicle-associated epithelium is regulated by TRAF6-mediated NF-κB signaling. J Exp Med 215(2):501–519. https://doi.org/10.1084/jem.20160659
Article CAS PubMed PubMed Central Google Scholar
Sehgal A, Kobayashi A, Donaldson DS, Mabbott NA (2017) c-Rel is dispensable for the differentiation and functional maturation of M cells in the follicle-associated epithelium. Immunobiology 222(2):316–326. https://doi.org/10.1016/j.imbio.2016.09.008
Article CAS PubMed PubMed Central Google Scholar
Ohno H, Hase K (2010) Glycoprotein 2 (GP2): grabbing the FimH bacteria into M cells for mucosal immunity. Gut Microbes 1(6):407–410. https://doi.org/10.4161/gmic.1.6.14078
Article PubMed PubMed Central Google Scholar
Yanagihara S, Kanaya T, Fukuda S, Nakato G, Hanazato M, Wu XR, Yamamoto N, Ohno H (2017) Uromodulin-SlpA binding dictates Lactobacillus acidophilus uptake by intestinal epithelial M cells. Int Immunol 29(8):357–363. https://doi.org/10.1093/intimm/dxx043
Article CAS PubMed Google Scholar
Komban RJ, Strömberg A, Biram A, Cervin J, Lebrero-Fernández C, Mabbott N, Yrlid U, Shulman Z, Bemark M, Lycke N (2019) Activated Peyer's patch B cells sample antigen directly from M cells in the subepithelial dome. Nat Commun 10(1):2423. https://doi.org/10.1038/s41467-019-10144-w
Article CAS PubMed PubMed Central Google Scholar
Reboldi A, Arnon TI, Rodda LB, Atakilit A, Sheppard D, Cyster JG (2016) IgA production requires B cell interaction with subepithelial dendritic cells in Peyer's patches. Science (New York, NY) 352(6287):aaf4822. https://doi.org/10.1126/science.aaf4822
Kobayashi A, Donaldson DS, Erridge C, Kanaya T, Williams IR, Ohno H, Mahajan A, Mabbott NA (2013) The functional maturation of M cells is dramatically reduced in the Peyer's patches of aged mice. Mucosal Immunol 6(5):1027–1037. https://doi.org/10.1038/mi.2012.141
Article CAS PubMed PubMed Central Google Scholar
Pietrzak B, Tomela K, Olejnik-Schmidt A, Mackiewicz A, Schmidt M (2020) Secretory IgA in intestinal mucosal secretions as an adaptive barrier against microbial cells. Int J Mol Sci 21(23). https://doi.org/10.3390/ijms21239254
de la Rubia Ortí JE, Prado-Gascó V, Sancho Castillo S, Julián-Rochina M, Romero Gómez FJ, García-Pardo MP (2019) Cortisol and IgA are involved in the progression of Alzheimer's disease. A Pilot Study. Cell Mol Neurobiol 39(7):1061–1065. https://doi.org/10.1007/s10571-019-00699-z
Corthésy B (2013) Role of secretory IgA in infection and maintenance of homeostasis. Autoimmun Rev 12(6):661–665. https://doi.org/10.1016/j.autrev.2012.10.012
Article CAS PubMed Google Scholar
Donaldson DS, Sehgal A, Rios D, Williams IR, Mabbott NA (2016) Increased abundance of M cells in the gut epithelium dramatically enhances oral prion disease susceptibility. PLoS Pathog 12(12):e1006075. https://doi.org/10.1371/journal.ppat.1006075
Article CAS PubMed PubMed Central Google Scholar
Kraeuter AK, Guest PC, Sarnyai Z (2019) The y-maze for assessment of spatial working and reference memory in mice. Methods Mol Biol 1916:105–111. https://doi.org/10.1007/978-1-4939-8994-2_10
Article CAS PubMed Google Scholar
Donaldson DS, Shih BB, Mabbott NA (2021) Aging-related impairments to M cells in Peyer's patches coincide with disturbances to paneth cells. Front Immunol 12:761949. https://doi.org/10.3389/fimmu.2021.761949
Article CAS PubMed PubMed Central Google Scholar
Belz GT, Almeida FF (2017) Unusual suspects: dancing with stromal cells. Nat Immunol 18(6):601–602. https://doi.org/10.1038/ni.3741
Article CAS PubMed Google Scholar
Guzman-Martinez L, Calfío C, Farias GA, Vilches C, Prieto R, Maccioni RB (2021) New frontiers in the prevention, diagnosis, and treatment of Alzheimer's disease. J. Alzheimer’s Dis: JAD 82(s1):S51–s63. https://doi.org/10.3233/jad-201059
Article CAS PubMed Google Scholar
Donaldson DS, Pollock J, Vohra P, Stevens MP, Mabbott NA (2020) Microbial stimulation reverses the age-related decline in M cells in aged mice. iScience 23(6):101147. https://doi.org/10.1016/j.isci.2020.101147
Article CAS PubMed PubMed Central Google Scholar
Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A (2013) Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol 6(4):666–677. https://doi.org/10.1038/mi.2013.30
Article CAS PubMed PubMed Central Google Scholar
Yu Y (2018) Application of stem cell technology in antiaging and aging-related diseases. Adv Exp Med Biol 1086:255–265. https://doi.org/10.1007/978-981-13-1117-8_16
Article CAS PubMed Google Scholar
Choi J, Rakhilin N, Gadamsetty P, Joe DJ, Tabrizian T, Lipkin SM, Huffman DM, Shen X, Nishimura N (2019) Author correction: intestinal crypts recover rapidly from focal damage with coordinated motion of stem cells that is impaired by aging. Sci Rep 9(1):13992. https://doi.org/10.1038/s41598-019-43805-3
Article CAS PubMed PubMed Central Google Scholar
Nalapareddy K, Nattamai KJ, Kumar RS, Karns R, Wikenheiser-Brokamp KA, Sampson LL, Mahe MM, Sundaram N, Yacyshyn MB, Yacyshyn B, Helmrath MA, Zheng Y, Geiger H (2017) Canonical Wnt signaling ameliorates aging of intestinal stem cells. Cell Rep 18(11):2608–2621. https://doi.org/10.1016/j.celrep.2017.02.056
Article CAS PubMed PubMed Central Google Scholar
Sehgal A, Donaldson DS, Pridans C, Sauter KA, Hume DA, Mabbott NA (2018) The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche. Nat Commun 9(1):1272. https://doi.org/10.1038/s41467-018-03638-6
Article CAS PubMed PubMed Central Google Scholar
Schmucker DL (2002) Intestinal mucosal immunosenescence in rats. Exp Gerontol 37(2-3):197–203. https://doi.org/10.1016/s0531-5565(01)00184-x
Article CAS PubMed Google Scholar
Schmucker DL, Thoreux K, Owen RL (2001) Aging impairs intestinal immunity. Mech Ageing Dev 122(13):1397–1411. https://doi.org/10.1016/s0047-6374(01)00276-7
Comments (0)