Effects of Intestinal M Cells on Intestinal Barrier and Neuropathological Properties in an AD Mouse Model

Pocevičiūtė D, Nuñez-Diaz C, Roth B, Janelidze S, Giannisis A, Hansson O, Wennström M (2022) Increased plasma and brain immunoglobulin A in Alzheimer's disease is lost in apolipoprotein E ε4 carriers. Alzheimers Res Ther 14(1):117. https://doi.org/10.1186/s13195-022-01062-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li ZL, Ma HT, Wang M, Qian YH (2022) Research trend of microbiota-gut-brain axis in Alzheimer's disease based on CiteSpace (2012-2021): A bibliometrics analysis of 608 articles. Front Aging Neurosci 14:1036120. https://doi.org/10.3389/fnagi.2022.1036120

Article  PubMed  PubMed Central  Google Scholar 

Wiatrak B, Balon K, Jawień P, Bednarz D, Jęśkowiak I, Szeląg A (2022) The role of the microbiota-gut-brain axis in the development of Alzheimer's disease. Int J Mol Sci 23(9). https://doi.org/10.3390/ijms23094862

Hao W, Hao C, Wu C, Xu Y, Jin C (2022) Aluminum induced intestinal dysfunction via mechanical, immune, chemical and biological barriers. Chemosphere 288(Pt 2):132556. https://doi.org/10.1016/j.chemosphere.2021.132556

Article  CAS  PubMed  Google Scholar 

Martel J, Chang SH, Ko YF, Hwang TL, Young JD, Ojcius DM (2022) Gut barrier disruption and chronic disease. Trends Endocrinol. Metab: TEM 33(4):247–265. https://doi.org/10.1016/j.tem.2022.01.002

Article  CAS  PubMed  Google Scholar 

Yuan S, Yang J, Jian Y, Lei Y, Yao S, Hu Z, Liu X, Tang C, Liu W (2022) Treadmill exercise modulates intestinal microbes and suppresses LPS displacement to alleviate neuroinflammation in the brains of APP/PS1 mice. Nutrients 14(19). https://doi.org/10.3390/nu14194134

Wang X, Liu GJ, Gao Q, Li N, Wang RT (2020) C-type lectin-like receptor 2 and zonulin are associated with mild cognitive impairment and Alzheimer's disease. Acta Neurol Scand 141(3):250–255. https://doi.org/10.1111/ane.13196

Article  CAS  PubMed  Google Scholar 

de Lau W, Kujala P, Schneeberger K, Middendorp S, Li VS, Barker N, Martens A, Hofhuis F, DeKoter RP, Peters PJ, Nieuwenhuis E, Clevers H (2012) Peyer's patch M cells derived from Lgr5(+) stem cells require SpiB and are induced by RankL in cultured "miniguts". Mol Cell Biol 32(18):3639–3647. https://doi.org/10.1128/mcb.00434-12

Article  PubMed  PubMed Central  Google Scholar 

Rios D, Wood MB, Li J, Chassaing B, Gewirtz AT, Williams IR (2016) Antigen sampling by intestinal M cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria. Mucosal Immunol 9(4):907–916. https://doi.org/10.1038/mi.2015.121

Article  CAS  PubMed  Google Scholar 

Kimura S, Kobayashi N, Nakamura Y, Kanaya T, Takahashi D, Fujiki R, Mutoh M, Obata Y, Iwanaga T, Nakagawa T, Kato N, Sato S, Kaisho T, Ohno H, Hase K (2019) Sox8 is essential for M cell maturation to accelerate IgA response at the early stage after weaning in mice. J Exp Med 216(4):831–846. https://doi.org/10.1084/jem.20181604

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanaya T, Sakakibara S, Jinnohara T, Hachisuka M, Tachibana N, Hidano S, Kobayashi T, Kimura S, Iwanaga T, Nakagawa T, Katsuno T, Kato N, Akiyama T, Sato T, Williams IR, Ohno H (2018) Development of intestinal M cells and follicle-associated epithelium is regulated by TRAF6-mediated NF-κB signaling. J Exp Med 215(2):501–519. https://doi.org/10.1084/jem.20160659

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sehgal A, Kobayashi A, Donaldson DS, Mabbott NA (2017) c-Rel is dispensable for the differentiation and functional maturation of M cells in the follicle-associated epithelium. Immunobiology 222(2):316–326. https://doi.org/10.1016/j.imbio.2016.09.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohno H, Hase K (2010) Glycoprotein 2 (GP2): grabbing the FimH bacteria into M cells for mucosal immunity. Gut Microbes 1(6):407–410. https://doi.org/10.4161/gmic.1.6.14078

Article  PubMed  PubMed Central  Google Scholar 

Yanagihara S, Kanaya T, Fukuda S, Nakato G, Hanazato M, Wu XR, Yamamoto N, Ohno H (2017) Uromodulin-SlpA binding dictates Lactobacillus acidophilus uptake by intestinal epithelial M cells. Int Immunol 29(8):357–363. https://doi.org/10.1093/intimm/dxx043

Article  CAS  PubMed  Google Scholar 

Komban RJ, Strömberg A, Biram A, Cervin J, Lebrero-Fernández C, Mabbott N, Yrlid U, Shulman Z, Bemark M, Lycke N (2019) Activated Peyer's patch B cells sample antigen directly from M cells in the subepithelial dome. Nat Commun 10(1):2423. https://doi.org/10.1038/s41467-019-10144-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reboldi A, Arnon TI, Rodda LB, Atakilit A, Sheppard D, Cyster JG (2016) IgA production requires B cell interaction with subepithelial dendritic cells in Peyer's patches. Science (New York, NY) 352(6287):aaf4822. https://doi.org/10.1126/science.aaf4822

Article  CAS  Google Scholar 

Kobayashi A, Donaldson DS, Erridge C, Kanaya T, Williams IR, Ohno H, Mahajan A, Mabbott NA (2013) The functional maturation of M cells is dramatically reduced in the Peyer's patches of aged mice. Mucosal Immunol 6(5):1027–1037. https://doi.org/10.1038/mi.2012.141

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pietrzak B, Tomela K, Olejnik-Schmidt A, Mackiewicz A, Schmidt M (2020) Secretory IgA in intestinal mucosal secretions as an adaptive barrier against microbial cells. Int J Mol Sci 21(23). https://doi.org/10.3390/ijms21239254

de la Rubia Ortí JE, Prado-Gascó V, Sancho Castillo S, Julián-Rochina M, Romero Gómez FJ, García-Pardo MP (2019) Cortisol and IgA are involved in the progression of Alzheimer's disease. A Pilot Study. Cell Mol Neurobiol 39(7):1061–1065. https://doi.org/10.1007/s10571-019-00699-z

Article  PubMed  Google Scholar 

Corthésy B (2013) Role of secretory IgA in infection and maintenance of homeostasis. Autoimmun Rev 12(6):661–665. https://doi.org/10.1016/j.autrev.2012.10.012

Article  CAS  PubMed  Google Scholar 

Donaldson DS, Sehgal A, Rios D, Williams IR, Mabbott NA (2016) Increased abundance of M cells in the gut epithelium dramatically enhances oral prion disease susceptibility. PLoS Pathog 12(12):e1006075. https://doi.org/10.1371/journal.ppat.1006075

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kraeuter AK, Guest PC, Sarnyai Z (2019) The y-maze for assessment of spatial working and reference memory in mice. Methods Mol Biol 1916:105–111. https://doi.org/10.1007/978-1-4939-8994-2_10

Article  CAS  PubMed  Google Scholar 

Donaldson DS, Shih BB, Mabbott NA (2021) Aging-related impairments to M cells in Peyer's patches coincide with disturbances to paneth cells. Front Immunol 12:761949. https://doi.org/10.3389/fimmu.2021.761949

Article  CAS  PubMed  PubMed Central  Google Scholar 

Belz GT, Almeida FF (2017) Unusual suspects: dancing with stromal cells. Nat Immunol 18(6):601–602. https://doi.org/10.1038/ni.3741

Article  CAS  PubMed  Google Scholar 

Guzman-Martinez L, Calfío C, Farias GA, Vilches C, Prieto R, Maccioni RB (2021) New frontiers in the prevention, diagnosis, and treatment of Alzheimer's disease. J. Alzheimer’s Dis: JAD 82(s1):S51–s63. https://doi.org/10.3233/jad-201059

Article  CAS  PubMed  Google Scholar 

Donaldson DS, Pollock J, Vohra P, Stevens MP, Mabbott NA (2020) Microbial stimulation reverses the age-related decline in M cells in aged mice. iScience 23(6):101147. https://doi.org/10.1016/j.isci.2020.101147

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A (2013) Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol 6(4):666–677. https://doi.org/10.1038/mi.2013.30

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu Y (2018) Application of stem cell technology in antiaging and aging-related diseases. Adv Exp Med Biol 1086:255–265. https://doi.org/10.1007/978-981-13-1117-8_16

Article  CAS  PubMed  Google Scholar 

Choi J, Rakhilin N, Gadamsetty P, Joe DJ, Tabrizian T, Lipkin SM, Huffman DM, Shen X, Nishimura N (2019) Author correction: intestinal crypts recover rapidly from focal damage with coordinated motion of stem cells that is impaired by aging. Sci Rep 9(1):13992. https://doi.org/10.1038/s41598-019-43805-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nalapareddy K, Nattamai KJ, Kumar RS, Karns R, Wikenheiser-Brokamp KA, Sampson LL, Mahe MM, Sundaram N, Yacyshyn MB, Yacyshyn B, Helmrath MA, Zheng Y, Geiger H (2017) Canonical Wnt signaling ameliorates aging of intestinal stem cells. Cell Rep 18(11):2608–2621. https://doi.org/10.1016/j.celrep.2017.02.056

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sehgal A, Donaldson DS, Pridans C, Sauter KA, Hume DA, Mabbott NA (2018) The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche. Nat Commun 9(1):1272. https://doi.org/10.1038/s41467-018-03638-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmucker DL (2002) Intestinal mucosal immunosenescence in rats. Exp Gerontol 37(2-3):197–203. https://doi.org/10.1016/s0531-5565(01)00184-x

Article  CAS  PubMed  Google Scholar 

Schmucker DL, Thoreux K, Owen RL (2001) Aging impairs intestinal immunity. Mech Ageing Dev 122(13):1397–1411. https://doi.org/10.1016/s0047-6374(01)00276-7

Comments (0)

No login
gif