Using Powerlifting Athletes to Determine Strength Adaptations Across Ages in Males and Females: A Longitudinal Growth Modelling Approach

Brill PA, Macera CA, Davis DR, Blair SN, Gordon N. Muscular strength and physical function. Med Sci Sports Exerc. 2000;2:412–6.

Article  Google Scholar 

Ruiz JR, Sui X, Lobelo F, Morrow JR, Jackson AW, Sjostrom M, et al. Association between muscular strength and mortality in men: prospective cohort study. BMJ. 2008;337:439.

Article  Google Scholar 

Ortega FBSK, Tynelius P, Rasmussen F. Muscular strength in male adolescents and premature death: cohort study of one million participants. BMJ. 2012;345: e7279.

Article  PubMed  PubMed Central  Google Scholar 

Kemmler W, vonStengel S, Schoene D, Kohl M. Changes of maximum leg strength indices during adulthood a cross-sectional study with non-athletic men aged 19–91. Frontiers Physiol. 2018;9:1524.

Article  Google Scholar 

Rantanen T, Masaki K, Foley D, Izmirlian G, White L, Guralnik JM. Grip strength changes over 27yr in Japanese–American men. J Appl Physiol. 1998;85(6):2047–53.

Article  CAS  PubMed  Google Scholar 

Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R. Aging of skeletal muscle: a 12-year longitudinal study. J Appl Physiol. 2000;88:1321–6.

Article  CAS  PubMed  Google Scholar 

Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61:1059–64.

Article  PubMed  Google Scholar 

McKendry J, Breen L, Shad BJ, Greig CA. Muscle morphology and performance in master athletes: a systematic review and meta-analyses. Ageing Res Rev. 2018;45:62–82.

Article  PubMed  Google Scholar 

World Health Organization. WHO guidelines on physical activity and sedentary behaviour. Geneva: World Health Organisation; 2020.

Google Scholar 

Steele J, Fisher JP, Giessing J, Androulakis-Korakakis P, Wolf M, Kroeske B, et al. Long-term time-course of strength adaptation to minimal dose resistance training through retrospective longitudinal growth modeling. Res Q Exerc Sport. 2022. https://doi.org/10.1080/02701367.2022.2070592.

Article  PubMed  Google Scholar 

Latella C, Teo W-P, Spathis J, D. VDH. Long-term strength adaptation: a 15-year analysis of powerlifting athletes. J Strength Cond Res. 2020;34(9):2412–8.

Latella C, Owen PJ, Davies T, Spathis J, Mallard A, van den Hoek D. Long-term adaptations in the squat, bench press, and deadlift: assessing strength gain in powerlifting athletes. Med Sci Sports Exerc. 2022;54(5):841–50.

Article  PubMed  Google Scholar 

Latella C, van den Hoek D, Teo W-P. Factors affecting powerlifting performance: an analysis of age- and weight-based determinants of relative strength. Int Journal of Perform Anal Sport. 2018;18(4):532–44.

Google Scholar 

Shaw MP, Andersen V, Saeterbakken AH, Pulsen G, Samnoy LE, Solsatd TEJ. Contemporary training practices of norwegian powerlifters. J Strength Cond Res. 2022;36(9):2544–51.

Article  PubMed  Google Scholar 

Pearson J, Spathis JG, van den Hoek DJ, Owen PJ, Weakley J, Latella C. Effect of competition frequency on strength performance of powerlifting athletes. J Strength Cond Res. 2020;34(5):1213–9.

Article  PubMed  Google Scholar 

Miller JD, Ventresca HC, Bracken LE. Rate of performance change in american female weightlifters over ten years of competition. Int J Exerc Sci. 2018;11(6):290–307.

PubMed  PubMed Central  Google Scholar 

Gelman A, Hill J. Data analysis using regression and multilevel/hierarchical models (analytical methods for social research). Cambridge University Press, Cambridge. 2006. https://doi.org/10.1017/CBO9780511790942.

Amrhein V, Trafimow D, Greenland S. Inferential statistics as descriptive statistics: there is no replication crisis if we don’t expect replication. Am Stat. 2019;73:262–70.

Article  Google Scholar 

McShane BBGD, Gelman A, Robert C, Tackett JL. Abandon statistical significance. Am Stat. 2019;73:235–45.

Article  Google Scholar 

Amrhein V, Greenland S, McShane B. Scientists rise up against statistical significance. Nature. 2019;567(7748):305–7.

Article  CAS  PubMed  Google Scholar 

Lüdecke D, Ben-Shachar MS, Patil I, Waggoner P, Makowski D. Performance: an R package for assessment, comparison and testing of statistical models. J Open Source Software. 2021;6(60):3139.

Article  Google Scholar 

Pinheiro JC, Bates DM. Linear mixed-effects models: basic concepts and examples. Springer, Springer, New York. https://doi.org/10.1007/978-1-4419-0318-1_1.

Wilkinson GN, Rogers C. Symbolic description of factorial models for analysis of variance. J Appl Stat. 1973;22(3):392–9.

Article  Google Scholar 

Bates D, Mächler M, Bolker B, Walker S. fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48.

Article  Google Scholar 

Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7(4):308–13.

Article  Google Scholar 

Ludecke D. _sjPlot: data visualization for statistics in social science_. R package version 2.8.4. 2020 [cited; Available from: https://CRAN.R-project.org/package=sjPlot

Gelman A. Scaling regression inputs by dividing by two standard deviations. Stat Med. 2008;27:2865–73.

Article  PubMed  Google Scholar 

Lüdecke D. ggeffects: tidy data frames of marginal effects from regression models. J Open Source Softw. 2018;3(26):772.

Article  Google Scholar 

Lumley T, Diehr P, Emerson S, Chen L. The importance of the normality assumption in large public health data sets. Annu Rev Public Health. 2002;23:151–69.

Article  PubMed  Google Scholar 

Schmidt AF, Finan C. Linear regression and the normality assumption. J Clin Epidemiol. 2018;98:146–51.

Article  PubMed  Google Scholar 

Schielzeth H, Dingemanse NJ, Nakagawa S, Westneat DF, Allegue H, Teplitsky C, et al. Robustness of linear mixed-effects models to violations of distributional assumptions. Methods Ecol Evol. 2020;11(9):1141–52.

Article  Google Scholar 

Knief E, Forstmeier W. Violating the normality assumption may be the lesser of two evils. Behavior Res Methods. 2021;53:2576–90.

Article  Google Scholar 

Jacqmin-Gadda H, Sibillot S, Proust C, Molina JM, Thiebaut R. Robustness of the linear mixed model to misspecified error distribution. Comp Stat Data Anal. 2007;51:5142–54.

Article  Google Scholar 

Peterson MD, Rhea MR, Alvar BA. Applications of the dose-response for muscular strength development: a review of meta-analytic efficacy and reliability for designing training prescription. J Strength Cond Res. 2005;19(4):950–80.

PubMed  Google Scholar 

Fiatarone MA, O’Neill EFO, Ryan ND, Clements KM, Solares GR, Nelson ME, et al. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med. 1994;330:1769–75.

Article  CAS  PubMed  Google Scholar 

Häkkinen K, Kraemer WJ, Pakarinen A, Triplett-McBride T, McBride JM, Häkkinen A, et al. Effects of heavy resistance/power training on maximal strength, muscle morphology, and hormonal response patterns in 60–75-year-old men and women. Can J Appl Physiol. 2002;27:213–31.

Article  PubMed  Google Scholar 

de Vreede PL, Van Meeteren NL, Samson MM, Wittink HM, Duursma SA, Verhaar HJ. The effect of functional tasks exercise and resistance exercise on health-related quality of life and physical activity. A randomised controlled trial. Gerontology. 2007;53:12–20.

Article  PubMed  Google Scholar 

Zanuso S, Sieverdes JC, Smith N, Carraro A, Bergamin M. The effect of a strength training program on affect, mood, anxiety, and strength performance in older individuals. Int J Sport Psychol. 2012;43:53–6.

Google Scholar 

Silva RB, Eslick GD, Duque G. Exercise for falls and fracture prevention in long term care facilities: a systematic review and meta-analysis. J Am Med Dir Assoc. 2013;14:685–9.

Article  PubMed  Google Scholar 

Huebner MAH, Garinther A, Meltzer, DE. How heavy lifting lightens our lives: content analysis of perceived outcomes of masters weightlifting. Front Sports Act Living 2022;4.

Dahab KSMT. Strength training in children and adolescents. Sports Health. 2009;1(3):223–6.

Article  PubMed  PubMed Central  Google Scholar 

Grosicki GJ, Zepeda CS, Sundberg CW. Single muscle fibre contractile function with ageing. J Physiol. 2022.

Sun F, Norman IJ, While AE. Physical activity in older people: a systematic review. BMC Public Health. 2013;13:449.

Article  PubMed  PubMed Central  Google Scholar 

Unhjem R, Nygård M, van den Hoven LT, Sidhu SK, Hoff J, Wang E. Lifelong strength training mitigates the age-related decline in efferent drive. J Appl Physiol. 2016;121(2):415–23.

Article  PubMed  Google Scholar 

Ethgen O, Beaudart C, Buckinx F, Bruyère O, Reginster JY. The future prevalence of sarcopenia in Europe: a claim for public health action. Calcified Tissue Int. 2017;100:229–34.

Article  CAS  Google Scholar 

Moreland JD, Richardson JA, Goldsmith CH, Clase CM. Muscle weakness and falls in older adults: a systematic review and meta-analysis. J Am Geriatric Soc. 2004;52(7):1121–9.

Article  Google Scholar 

McGrath RP, Kraemer WJ, Snih SA, Peterson MD. Handgrip strength in health and aging adults. Sports Med (Auckl NZ). 2018;48:1993–2000.

Article  Google Scholar 

Pinedo-Villanueva R, Westbury LD, Syddall HE, Sanchez-Santos MT, Dennison EM, Robinson SM, et al. Health care costs associated with muscle weakness: a UK population-based estimate. Calcified Tissue Int. 2019;104:137–44.

Article  CAS  Google Scholar 

Kittilsen HT, Goleva-Fjellet S, Freberg BI, Nicolaisen I, Stoa EM, Bratland-Sanda S, et al. Responses to maximal strength training in different age and gender groups. Front Physiol. 2021.

Roth SM, Ivey FM, Martel GF, Lemmer JT, Hurlbut DE, Siegel EL, et al. Muscle size responses to strength training in young and older men and women. J Am Geriatric Soc. 2001;49(11):1428–33.

Article  CAS  Google Scholar 

Comments (0)

No login
gif