Palmer LD, Skaar EP. Transition metals and virulence in bacteria. Annu Rev Genet. 2016;50:67–91. https://doi.org/10.1146/annurev-genet-120215-035146.
Article CAS PubMed PubMed Central Google Scholar
Johnson MDL, Kehl-Fie TE, Klein R, Kelly J, Burnham C, Mann B, Rosch JW. Role of copper efflux in pneumococcal pathogenesis and resistance to macrophage-mediated immune clearance. Infect Immun. 2015;83:1684–94. https://doi.org/10.1128/IAI.03015-14.
Article CAS PubMed PubMed Central Google Scholar
Porcheron G, Garénaux A, Proulx J, Sabri M, Dozois CM. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front Cell Infect Microbiol. 2013;3:1–24. https://doi.org/10.3389/fcimb.2013.00090.
WHO. Treatment and prevention of pneumonia. World Health Assambly. 2010;63 (ed.):1–4.
Honsa ES, Johnson MDL, Rosch JW. The roles of transition metals in the physiology and pathogenesis of Streptococcus pneumoniae. Front Cell Infect Microbiol. 2013;3:1–15. https://doi.org/10.3389/fcimb.2013.00092.
Eijkelkamp BA, Morey JR, Neville SL, Tan A, Pederick VG, Cole N, Singh PP, Ong C-LY, Gonzalez de Vega R, Clases D, Cunningham BA, Hughes CE, Comerford I, Brazel EB, Whittall JJ, Plumptre CD, McColl SR, Paton JC, McEwan AG, Doble PA, McDevitt CA. Dietary zinc and the control of Streptococcus pneumoniae infection. PLoS Pathog. 2019;15:e1007957. https://doi.org/10.1371/journal.ppat.1007957.
Article CAS PubMed PubMed Central Google Scholar
Neville SL, Sjöhamn J, Watts JA, MacDermott-Opeskin H, Fairweather SJ, Ganio K, Carey Hulyer A, McGrath AP, Hayes AJ, Malcolm TR, Davies MR, Nomura N, Iwata S, O ML, Maher MJ, McDevitt CA. The structural basis of bacterial manganese import.2021
McDevitt CA, Ogunniyi AD, Valkov E, Lawrence MC, Kobe B, McEwan AG, Paton JC. A molecular mechanism for bacterial susceptibility to Zinc. PLoS Pathog. 2011;7 https://doi.org/10.1371/journal.ppat.1002357
Eijkelkamp BA, Morey JR, Ween MP, Ong CLY, McEwan AG, Paton JC, McDevitt CA. Extracellular zinc competitively inhibits manganese uptake and compromises oxidative stress management in Streptococcus pneumoniae. PLoS One. 2014;9 https://doi.org/10.1371/journal.pone.0089427
Doble PA, Miklos GLG. Distributions of manganese in diverse human cancers provide insights into tumour radioresistance. Metallomics. 2018;10:1191–210. https://doi.org/10.1039/c8mt00110c.
Article CAS PubMed Google Scholar
Morona JK, Morona R, Miller DC, Paton JC. Streptococcus pneumoniae capsule biosynthesis protein CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase. J Bacteriol. 2002;184:577–83. https://doi.org/10.1128/JB.184.2.577-583.2002.
Article CAS PubMed PubMed Central Google Scholar
Hoyer J, Bartel J, Gómez-Mejia A, Rohde M, Hirschfeld C, Heß N, Sura T, Maaß S, Hammerschmidt S, Becher D. Proteomic response of Streptococcus pneumoniae to iron limitation. Int J Med Microbiolog. 2018;308:713–21. https://doi.org/10.1016/j.ijmm.2018.02.001.
Jenkitkasemwong S, Wang CY, MacKenzie B, Knutson MD. Physiologic implications of metal-ion transport by ZIP14 and ZIP8. BioMetals. 2012;25:643–55. https://doi.org/10.1007/s10534-012-9526-x.
Article CAS PubMed PubMed Central Google Scholar
Bafaro E, Liu Y, Xu Y, Dempski RE. The emerging role of zinc transporters in cellular homeostasis and cancer. Signal Transduct Target Ther. 2017;2:1–12. https://doi.org/10.1038/sigtrans.2017.29.
Liu MJ, Bao S, Gálvez-Peralta M, Pyle CJ, Rudawsky AC, Pavlovicz RE, Killilea DW, Li C, Nebert DW, Wewers MD, Knoell DL. ZIP8 regulates host defense through zinc-mediated inhibition of NF-κB. Cell Rep. 2013;3:386–400. https://doi.org/10.1016/j.celrep.2013.01.009.
Article CAS PubMed PubMed Central Google Scholar
Besecker B, Bao S, Bohacova B, Papp A, Sadee W, Knoell DL. The human zinc transporter SLC39A8 (Zip8) is critical in zinc-mediated cytoprotection in lung epithelia. Am J Physiol Lung Cell Mol Physiol. 2008;294:1127–36. https://doi.org/10.1152/ajplung.00057.2008.
Wessels I, Cousins RJ. Zinc dyshomeostasis during polymicrobial sepsis in mice involves zinc transporter Zip14 and can be overcome by zinc supplementation. Am J Physiol Gastrointest Liver Physiol. 2015;309:768–78. https://doi.org/10.1152/ajpgi.00179.2015.
Sapkota M, Knoell DL (2018) Essential role of zinc and zinc transporters in myeloid cell function and host defense against infection. J Immunol Res 2018:. https://doi.org/10.1155/2018/4315140
Hara T, Takeda T, aki, Takagishi T, Fukue K, Kambe T, Fukada T,. Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiolog Sci. 2017;67:283–301. https://doi.org/10.1007/s12576-017-0521-4.
Zang ZS, Xu YM, Lau ATY. Molecular and pathophysiological aspects of metal ion uptake by the zinc transporter ZIP8 (SLC39A8). Toxicol Res (Camb). 2016;5:987–1002. https://doi.org/10.1039/c5tx00424a.
Article CAS PubMed Google Scholar
Doble PA, Gonzalez de Vega R, Bishop DP, Hare DJ, Clases D. Laser ablation-inductively coupled plasma-mass spectrometry imaging in biology. Chem Rev. 2021. https://doi.org/10.1021/acs.chemrev.0c01219.
Bishop DP, Hare DJ, Clases D, Doble PA. Applications of liquid chromatography-inductively coupled plasma-mass spectrometry in the biosciences: a tutorial review and recent developments. TrAC - Trends Analy Chem. 2018;104:11–21.
Clases D, Fingerhut S, Jeibmann A, Sperling M, Doble P, Karst U. LA-ICP-MS/MS improves limits of detection in elemental bioimaging of gadolinium deposition originating from MRI contrast agents in skin and brain tissues. J Trace Elements Med Biolog. 2019;51:212–8. https://doi.org/10.1016/j.jtemb.2018.10.021.
Clases D, Gonzalez De Vega R, Adlard PA, Doble PA. On-line reverse isotope dilution analysis for spatial quantification of elemental labels used in immunohistochemical assisted imaging mass spectrometry via LA-ICP-MS. J Anal At Spectrom. 2019;34:407–12. https://doi.org/10.1039/c8ja00324f.
Hare DJ, Lear J, Bishop D, Beavis A, Doble P, a. Protocol for production of matrix-matched brain tissue standards for imaging by laser ablation-inductively coupled plasma-mass spectrometry. Analytical Meth. 2013;5:1915. https://doi.org/10.1039/c3ay26248k.
Šala M, Šelih VS, van Elteren JT. Gelatin gels as multi-element calibration standards in LA-ICP-MS bioimaging: fabrication of homogeneous standards and microhomogeneity testing. Analyst. 2017;142:3356–9. https://doi.org/10.1039/C7AN01361B.
Waentig L, Jakubowski N, Hardt S, Scheler C, Roos PH, Linscheid MW. Comparison of different chelates for lanthanide labeling of antibodies and application in a Western blot immunoassay combined with detection by laser ablation (LA-)ICP-MS. J Anal At Spectrom. 2012;27:1311–20. https://doi.org/10.1039/c2ja30068k.
Liu R, Wu P, Yang L, Hou X, Lv Y. Inductively coupled plasma mass spectrometry-based immunoassay: a review. Mass Spectrom Rev. 2014;33:373–93. https://doi.org/10.1002/mas.21391.
Article CAS PubMed Google Scholar
Seuma J, Bunch J, Cox A, McLeod C, Bell J, Murray C. Combination of immunohistochemistry and laser ablation ICP mass spectrometry for imaging of cancer biomarkers. Proteomics. 2008;8:3775–84. https://doi.org/10.1002/pmic.200800167.
Article CAS PubMed Google Scholar
Bishop DP, Cole N, Zhang T, Doble PA, Hare DJ. A guide to integrating immunohistochemistry and chemical imaging. Chem Soc Rev. 2018;47:3770–87. https://doi.org/10.1039/c7cs00610a.
Article CAS PubMed Google Scholar
Clases D, Gonzalez de Vega R, Funke S, Lockwood TE, Westerhausen M, Taudte RV, Adlard PA, Doble P. Matching sensitivity to abundance: high resolution immuno-mass spectrometry imaging of lanthanide labels and endogenous elements in the murine brain. J Anal At Spectrom. 2020;35:728–35. https://doi.org/10.1039/C9JA00405J.
Hare DJ, Lei P, Ayton S, Roberts BR, Grimm R, George JL, Bishop DP, Beavis AD, Donovan SJ, McColl G, Volitakis I, Masters CL, Adlard Pa, Cherny Ra, Bush AI, Finkelstein DI, Doble Pa. An iron–dopamine index predicts risk of parkinsonian neurodegeneration in the substantia nigra pars compacta. Chem Sci. 2014;5:2160. https://doi.org/10.1039/c3sc53461h.
Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, Schüffler PJ, Grolimund D, Buhmann JM, Brandt S, Varga Z, Wild PJ, Günther D, Bodenmiller B. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Meth. 2014;11:417–22. https://doi.org/10.1038/nmeth.2869.
Ramos-Vara JA. Technical aspects of immunohistochemistry. Vet Pathol. 2005;42:405–26. https://doi.org/10.1354/vp.42-4-405.
Article CAS PubMed Google Scholar
Kim SW, Roh J, Park CS. Immunohistochemistry for pathologists: protocols, pitfalls, and tips. J Pathol Transl Med. 2016;50:411–8.
Article PubMed PubMed Central Google Scholar
Brey EM, Lalani Z, Johnston C, Wong M, McIntire LV, Duke PJ, Patrick CW. Automated selection of DAB-labeled tissue for immunohistochemical quantification. J Histochem Cytochem. 2003;51:575–84. https://doi.org/10.1177/002215540305100503.
Article CAS PubMed Google Scholar
Westerhausen MT, Lockwood TE, Gonzalez De Vega R, Röhnelt A, Bishop DP, Cole N, Doble PA, Clases D. Low background mould-prepared gelatine standards for reproducible quantification in elemental bio-imaging. Analyst. 2019;144:6881–8. https://doi.org/10.1039/c9an01580a.
Comments (0)