Jiang H, Tang CL, Wang Y, Mao LH, Sun Q, Zhang LB, Song HJ, Huang FL, Zuo CC. Low content and low-temperature cured silver nanoparticles/silver ion composite ink for flexible electronic applications with robust mechanical performance. Appl Surf Sci. 2021;564:150447. https://doi.org/10.1016/j.apsusc.2021.150447.
Xi JF, Kan WJ, Zhu Y, Huang SW, Wu LF, Wang J. Synthesis of silver nanoparticles using Eucommia ulmoides extract and their potential biological function in cosmetics. Heliyon. 2022;8:e10021. https://doi.org/10.1016/j.heliyon.2022.e10021.
Article CAS PubMed PubMed Central Google Scholar
Mehmood I, Huang JC, Khan SA, Shah AH, Khan QU, Kiani M, Zhou DJ, Li GJ. Investigation of silver doped CdS co-sensitized TiO2/CISe/Ag–CdS heterostructure for improved optoelectronic properties. Opt Mater. 2021;111:110645. https://doi.org/10.1016/j.optmat.2020.110645.
García-Bonillo C, Texidó R, Gilabert-Porres J, Borrós S. Plasma-induced nanostructured metallic silver surfaces: study of bacteriophobic effect to avoid bacterial adhesion on medical devices. Heliyon. 2022;8:e10842. https://doi.org/10.1016/j.heliyon.2022.e10842.
Article CAS PubMed PubMed Central Google Scholar
Mendes-Oliveira G, Luo YG, Zhou B, Gu GY, Teng Z, Bolten S, Park E, Pearlstein D, Turner ER, Millner PD, Nou XW. Use of a silver-based sanitizer to accelerate Escherichia coli die-off on fresh-cut lettuce and maintain produce quality during cold storage: laboratory and pilot-plant scale tests. Food Res Int. 2022;157:111170. https://doi.org/10.1016/j.foodres.2022.111170.
Article CAS PubMed Google Scholar
Javed XW, Cuss XW, Shotyk XW. Dissolved versus particulate forms of trace elements in the Athabasca River, upstream and downstream of bitumen mines and upgraders. Appl Geochem. 2020;122:104706. https://doi.org/10.1016/j.apgeochem.2020.104706.
Shotyk W, Bicalho B, Cuss CW, Donner MW, Grant-Weaver I, Haas-Neill S, Javed MB, Krachler M, Noernberg T, Pelletier R, Zaccone C. Trace metals in the dissolved fraction (<045μm) of the lower Athabasca River: analytical challenges and environmental implications. Sci Total Environ. 2017;580:660–669. https://doi.org/10.1016/j.scitotenv.2016.12.012.
Jin Q, Feng C, Xia P, Bai Y. Hardness-dependent water quality criteria for protection of freshwater aquatic organisms for silver in China. Int J Environ Res Public Health. 2022;19:6067. https://doi.org/10.3390/ijerph19106067.
Article CAS PubMed PubMed Central Google Scholar
Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H. Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol Lett. 2012;208:286–92. https://doi.org/10.1016/j.toxlet.2011.11.002.
Article CAS PubMed Google Scholar
Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regulatory. Toxicol Pharmacol. 2018;98:257–67. https://doi.org/10.1016/j.yrtph.2018.08.007.
Arai Y, Miyayama T, Hirano S. Difference in the toxicity mechanism between ion and nanoparticle forms of silver in the mouse lung and in macrophages. Toxicology. 2015;328:84–92. https://doi.org/10.1016/j.tox.2014.12.014.
Article CAS PubMed Google Scholar
Ryan J, Jacob P, Lee A, Gagnon Z, Pavel IE. Biodistribution and toxicity of antimicrobial ionic silver (Ag+) and silver nanoparticle (AgNP+) species after oral exposure, in Sprague-Dawley rats. Food Chem Toxicol. 2022;166:113228. https://doi.org/10.1016/j.fct.2022.113228.
Article CAS PubMed Google Scholar
Huang YY, Wu YY, Ding W, Sun W, Hu C, Liu BZ, Liu HX, Zheng HL. Anion-synergistic adsorption enhances the selective removal of silver ions from complex wastewater by chitosan-coated magnetic silica core-shell nanoparticles. J Clean Prod. 2022;339:130777. https://doi.org/10.1016/j.jclepro.2022.130777.
Xu KQ, Liu YJ, Crespo GA, Cuartero M. Ultrathin ion-selective membranes for trace detection of lead, copper and silver ions. Electrochim Acta. 2022;427:140870. https://doi.org/10.1016/j.electacta.2022.140870.
Kamal S, Yang TCK. Silver enriched silver phosphate microcubes as an efficient recyclable SERS substrate for the detection of heavy metal ions. J Colloid Interf Sci. 2022;605:173–81. https://doi.org/10.1016/j.jcis.2021.07.084.
Shah RV, Pandey AK, Bhushan KS, Kumar SJ, Rao RM, Jaison PG. Deep eutectic solvent-based extraction of uranium(vi) from a wide range acidity and subsequent determination by direct loading in thermal ionization mass spectrometry. J Anal At Spectrom. 2021;36:590–7. https://doi.org/10.1039/D0JA00434K.
Wang RX, Zhang L, Zhang CL, Wang JW, Guan J, Jian ZM, Bu YT. Selective extraction of precious metals in the polar aprotic solvent system: experiment and simulation. Waste Manage. 2022;153:1–12. https://doi.org/10.1016/j.wasman.2022.08.012.
Suresh PS, Singh PP, Anmol S, Kapoor YS. Upendra Sharma. Lactic acid-based deep eutectic solvent: an efficient green media for the selective extraction of steroidal saponins from Trillium govanianum. Sep Purif Technol. 2022;294:121105. https://doi.org/10.1016/j.seppur.2022.121105.
Schaeffer N, Conceiçao JHF, Martins MAR, Neves MC, Erez-Sánchez MC, Gomes JRB, Papaiconomou N, Coutinho JAP. Non-ionic hydrophobic eutectics versatile solvents for tailored metal separation and valorization. Green Chem. 2020;22:2810–20. https://doi.org/10.1039/D0GC00793E.
Zhang M, Tian RB, Han H, Wu KJ, Wang BS, Liu YY, Zhu YM, Lu HF, Liang B. Preparation strategy and stability of deep eutectic solvents: a case study based on choline chloride-carboxylic acid. J Clean Prod. 2022;345:131028. https://doi.org/10.1016/j.jclepro.2022.131028.
Musarurwa H, Tavengwa NT. Deep eutectic solvent-based dispersive liquid-liquid micro-extraction of pesticides in food samples. Food Chem. 2021;342:127943. https://doi.org/10.1016/j.foodchem.2020.127943.
Article CAS PubMed Google Scholar
Kalyniukova A, Holuša J, Musiolek D, Sedlakova-Kadukova J, Płotka-Wasylka J, Andruch V. Application of deep eutectic solvents for separation and determination of bioactive compounds in medicinal plants. Ind Crop Prod. 2021;172:114047. https://doi.org/10.1016/j.indcrop.2021.114047.
Kaoui S, Chebli B, Zaidouni S, Basaid K, Mir Y. Deep eutectic solvents as sustainable extraction media for plants and food samples: a review, Sustain. Chem Pharm. 2023;31:100937. https://doi.org/10.1016/j.scp.2022.100937.
Wazeer I, Hizaddin HF, Hashim MA, Hadj-Kali MK. An overview about the extraction of heavy metals and other critical pollutants from contaminated water via hydrophobic deep eutectic solvents. J Environ Chem Eng. 2022;10:108574. https://doi.org/10.1016/j.jece.2022.108574.
Barzegar-Jalali MK, Jafari P, Jouyban A. Experimental determination and correlation of naproxen solubility in biodegradable low-toxic betaine-based deep eutectic solvents and water mixtures at 293.15 K to 313.15 K. Fluid Phase Equilibr. 2022;560:113508. https://doi.org/10.1016/j.fluid.2022.113508.
Jeong HH, Chen Z, Yadavali S, Xu J, Issadore D, Lee D. Large-scale production of compound bubbles using parallelized microfluidics for efficient extraction of metal ions. Lab Chip. 2019;19(4):665–73. https://doi.org/10.1039/C8LC01267A.
Article CAS PubMed PubMed Central Google Scholar
Abney CW, Gilhula JC, Lu K, Lin W. Metal-organic framework templated inorganic sorbents for rapid and efficient extraction of heavy metals. Adv Mater. 2014;26:7993–7. https://doi.org/10.1002/adma.201403428.
Article CAS PubMed Google Scholar
Zhao X, Zhang H, Yuan Y, Ren Y, Wang N. Ultra-fast and stable extraction of Li metal from seawater. Chem Commun (Camb). 2020;56:1577–80. https://doi.org/10.1039/C9CC08927F.
Article CAS PubMed Google Scholar
Peng FX, Liu M, Wang XL, Ding XQ. Synthesis of low-viscosity hydrophobic magnetic deep eutectic solvent: selective extraction of DNA. Anal Chim Acta. 2021;1181:338899. https://doi.org/10.1016/j.aca.2021.338899.
Article CAS PubMed Google Scholar
Rodriguez NR, Machiels L, Onghena B, Binnemans JSK. Selective recovery of zinc from goethite residue in the zinc industry using deep-eutectic solvents. RSC Adv. 2020;10:7328. https://doi.org/10.1039/d0ra00277a.
Surapong N, Pongpinyo P, Santaladchaiyakit Y, Burakham R. A biobased magnetic dual-dummy-template molecularly imprinted polymer using a deep eutectic solvent as a coporogen for highly selective enrichment of organophosphates. Food Chem. 2023;418:136045. https://doi.org/10.1016/j.foodchem.2023.136045.
Article CAS PubMed Google Scholar
Osch DJGPV, Zubeir LF, Bruinhorst AVD, Rocha MAA, Kroon MC. Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chem. 2015;17:4518–21. https://doi.org/10.1039/C5GC01451D.
Santana-Mayor A, Socas-Rodríguez B, Rodríguez-Ramos R, Herrera-Herrera AV, Rodríguez-Delgado MÁ. Quality assessment of environmental water by a simple and fast non-ionic hydrophobic natural deep eutectic solvent-based extraction procedure combined with liquid chromatography tandem mass spectrometry for the determination of plastic migrants. Anal Bioanal Chem. 2021;413:1967–81. https://doi.org/10.1007/s00216-021-03166-1.
Article CAS PubMed PubMed Central Google Scholar
Demmelmayer P, Steiner L, Weber H, Kienberger M. Thymol-menthol-based deep eutectic solvent as a modifier in reactive liquid–liquid extraction of carboxylic acids from pretreated sweet sorghum silage press juice. Sep Purif Technol. 2023;310:123060. https://doi.org/10.1016/j.seppur.2022.123060.
Comments (0)