A Synthetic Steroid 5α-Androst-3β, 5, 6β-triol Alleviates Radiation-Induced Brain Injury in Mice via Inhibiting GBP5/NF-κB/NLRP3 Signal Axis

Gupta B, Johnson NW, Kumar N (2016) Global epidemiology of head and neck cancers: a continuing challenge. Oncology 91(1):13–23. https://doi.org/10.1159/000446117

Article  PubMed  Google Scholar 

Rube CE, Raid S, Palm J, Rube C (2023) Radiation-induced brain injury: age dependency of neurocognitive dysfunction following radiotherapy. Cancers (Basel) 15(11):2999. https://doi.org/10.3390/cancers15112999

Wilke C, Grosshans D, Duman J, Brown P, Li J (2018) Radiation-induced cognitive toxicity: pathophysiology and interventions to reduce toxicity in adults. Neuro Oncol 20(5):597–607. https://doi.org/10.1093/neuonc/nox195

Article  CAS  PubMed  Google Scholar 

Lin X, Tang L, Li M, Wang M, Guo Z, Lv X, Qiu Y (2021) Irradiation-related longitudinal white matter atrophy underlies cognitive impairment in patients with nasopharyngeal carcinoma. Brain Imaging Behav 15(5):2426–2435

Article  PubMed  Google Scholar 

Chang YQ, Zhou GJ, Wen HM, He DQ, Xu CL, Chen YR, Li YH, Chen SX et al (2023) Treatment of radiation-induced brain injury with bisdemethoxycurcumin. Neural Regen Res 18(2):416–421. https://doi.org/10.4103/1673-5374.346549

Article  CAS  PubMed  Google Scholar 

Yang X, Ren H, Fu JJOM, Longevity C (2021) Treatment of radiation-induced brain necrosis. Oxid Med Cell Longev 2021:4793517

Article  PubMed  PubMed Central  Google Scholar 

Zheng B, Lin J, Li Y, Zhuo X, Huang X, Shen Q, Tang Y (2019) Predictors of the therapeutic effect of corticosteroids on radiation-induced optic neuropathy following nasopharyngeal carcinoma. Support Care Cancer 27:4213–4219

Article  PubMed  Google Scholar 

Xu Y, Rong X, Hu W, Huang X, Li Y, Zheng D, Cai Z et al (2018) Bevacizumab monotherapy reduces radiation-induced brain necrosis in nasopharyngeal carcinoma patients: a randomized controlled trial. Int J Radiat Oncol Biol Phys 101(5):1087–1095

Article  CAS  PubMed  Google Scholar 

Vaios EJ, Batich KA, Buckley AF, Dunn-Pirio A, Patel MP, Kirkpatrick JP, Goudar R, Peters KB (2022) Resolution of radiation necrosis with bevacizumab following radiation therapy for primary CNS lymphoma. Oncotarget 13:576–582

Article  PubMed  PubMed Central  Google Scholar 

Li Y, Huang X, Jiang J, Hu W, Hu J, Cai J, Rong X, Cheng J et al (2018) Clinical variables for prediction of the therapeutic effects of bevacizumab monotherapy in nasopharyngeal carcinoma patients with radiation-induced brain necrosis. Int J Radiat Oncol Biol Phys 100(3):621–629. https://doi.org/10.1016/j.ijrobp.2017.11.023

Article  CAS  PubMed  Google Scholar 

Voss M, Wenger KJ, Fokas E, Forster M-T, Steinbach JP, Ronellenfitsch MW (2021) Single-shot bevacizumab for cerebral radiation injury. BMC Neurol 21:1–7

Article  Google Scholar 

Turnquist C, Harris BT, Harris CC (2020) Radiation-induced brain injury: current concepts and therapeutic strategies targeting neuroinflammation. Neuriincol Adv 2(1):vdaa057

Google Scholar 

Lumniczky K, Szatmári T, Sáfrány G (2017) Ionizing radiation-induced immune and inflammatory reactions in the brain. Front Immunol 8:517. https://doi.org/10.3389/fimmu.2017.00517

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo N, Zhu W, Li X, Fu M, Peng X, Yang F, Zhang Y, Yin H et al (2022) Impact of gut microbiota on radiation-associated cognitive dysfunction and neuroinflammation in mice. Radiat Res 197(4):350–364

CAS  PubMed  Google Scholar 

Liu Q, Huang Y, Duan M, Yang Q, Ren B, Tang F (2022) Microglia as therapeutic target for radiation-induced brain injury. Int J Mol Sci 23(15):8286

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balentova S, Adamkov M (2015) Molecular, cellular and functional effects of radiation-induced brain injury: a review. Int J Mol Sci 16(11):27796–27815

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Pan H, Lin Z, Xiong C, Wei C, Li H, Tong F, Dong X (2021) Neuroprotective effect of fractalkine on radiation-induced brain injury through promoting the M2 polarization of microglia. Mol Neurobiol 58:1074–1087

Article  CAS  PubMed  Google Scholar 

Zhang Z, Jiang J, He Y, Cai J, Xie J, Wu M, Xing M, Zhang Z, Chang H et al (2022) Pregabalin mitigates microglial activation and neuronal injury by inhibiting HMGB1 signaling pathway in radiation-induced brain injury. J Neuroinflammation 19(1):231. https://doi.org/10.1186/s12974-022-02596-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

He B, Wang X, He Y, Li H, Yang Y, Shi Z, Liu Q, Wu M et al (2020) Gamma ray-induced glial activation and neuronal loss occur before the delayed onset of brain necrosis. Faseb j 34(10):13361–13375. https://doi.org/10.1096/fj.202000365RR

Article  CAS  PubMed  Google Scholar 

Li X, Chen X, Chen J, Zhou S, Wen J, Huang Y, Yan G, Zhang JJ (2015) Synthesis and neuroprotection of 5α-androst-3β, 5, 6β-triol derivatives. Ther Targets Neurol Dis 2:e831

Google Scholar 

Sun HJ, Xue DD, Lu BZ, Li Y, Sheng LX, Zhu Z, Zhou YW, Zhang JX, Lin GJ, Lin SZ, Yan GM, Chen YP, Yin W (2019) A novel synthetic steroid of 2β,3α,5α-trihydroxy-androst-6-one alleviates the loss of rat retinal ganglion cells caused by acute intraocular hypertension via inhibiting the inflammatory activation of microglia. Molecules 24(2):252. https://doi.org/10.3390/molecules24020252

Xue D, Wei C, Zhou Y, Wang K, Zhou Y, Chen C, Li Y, Sheng L et al (2022) TRIOL inhibits rapid intracellular acidification and cerebral ischemic injury: the role of glutamate in neuronal metabolic reprogramming. ACS Chem Neurosci 13(14):2110–2121. https://doi.org/10.1021/acschemneuro.2c00119

Article  CAS  PubMed  Google Scholar 

Kutsch M, Coers J (2021) Human guanylate binding proteins: nanomachines orchestrating host defense. FEBS J 288(20):5826–5849. https://doi.org/10.1111/febs.15662

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu P, Ye L, Ren Y, Zhao G, Zhang Y, Lu S, Li Q, Wu C et al (2023) Chemotherapy-induced phlebitis via the GBP5/NLRP3 inflammasome axis and the therapeutic effect of aescin. Br J Pharmacol 180(8):1132–1147. https://doi.org/10.1111/bph.16002

Article  CAS  PubMed  Google Scholar 

Zhou L, Zhao H, Zhao H, Meng X, Zhao Z, Xie H, Li J, Tang Y et al (2023) GBP5 exacerbates rosacea-like skin inflammation by skewing macrophage polarization towards M1 phenotype through the NF-κB signalling pathway. J Europ Acad Dermatol Venereol: JEADV 37(4):796–809. https://doi.org/10.1111/jdv.18725

Article  CAS  Google Scholar 

Shenoy AR, Wellington DA, Kumar P, Kassa H, Booth CJ, Cresswell P, MacMicking JD (2012) GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science 336(6080):481–485. https://doi.org/10.1126/science.1217141

Article  CAS  PubMed  Google Scholar 

Tang L, Wang Y, Leng T, Sun H, Zhou Y, Zhu W, Qiu P, Zhang J et al (2015) Cholesterol metabolite cholestane-3beta,5alpha,6beta-triol suppresses epileptic seizures by negative modulation of voltage-gated sodium channels. Steroids 98:166–172. https://doi.org/10.1016/j.steroids.2014.12.025

Article  CAS  PubMed  Google Scholar 

Zhang P, Chen JS, Li QY, Sheng LX, Gao YX, Lu BZ, Zhu WB, Zhan XY et al (2020) Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys. Zool Res 41(1):3–19. https://doi.org/10.24272/j.issn.2095-8137.2020.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang L, Yan M, Leng T, Yin W, Cai S, Duan S, Zhu W, Lin S et al (2018) Cholestane-3beta, 5alpha, 6beta-triol suppresses neuronal hyperexcitability via binding to voltage-gated sodium channels. Biochem Biophys Res Commun 496(1):95–100. https://doi.org/10.1016/j.bbrc.2018.01.004

Article  CAS  PubMed  Google Scholar 

Shi Z, Yu P, Lin WJ, Chen S, Hu X, Chen S, Cheng J, Liu Q et al (2023) Microglia drive transient insult-induced brain injury by chemotactic recruitment of CD8(+) T lymphocytes. Neuron 111(5):696-710e 699. https://doi.org/10.1016/j.neuron.2022.12.009

Article  CAS  PubMed  Google Scholar 

Sun HJ, Xue DD, Lu BZ, Li Y, Sheng LX, Zhu Z, Zhou YW, et al. (2019) A novel synthetic steroid of 2beta,3alpha,5alpha-trihydroxy-androst-6-one alleviates the loss of rat retinal ganglion cells caused by acute intraocular hypertension via inhibiting the inflammatory activation of microglia. Molecules 24(2):252. https://doi.org/10.3390/molecules24020252

Jeyaretna DS, Curry WT Jr, Batchelor TT, Stemmer-Rachamimov A, Plotkin SR (2011) Exacerbation of cerebral radiation necrosis by bevacizumab. J Clin Oncol: Off J Amer Soc Clin Oncol 29(7):e159-162. https://doi.org/10.1200/jco.2010.31.4815

Article  Google Scholar 

Li Q, Barres BA (2018) Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 18(4):225–242

Article  CAS  PubMed  Google Scholar 

Kim S, Chung H, Ngoc Mai H, Nam Y, Shin SJ, Park YH, Chung MJ, Lee JK et al (2020) Low-dose ionizing radiation modulates microglia phenotypes in the models of Alzheimer’s disease. Int J Mol Sci 21(12):4532

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen J, Leng T, Chen W, Yan M, Yin W, Huang Y, Lin S, Duan D et al (2013) A synthetic steroid 5alpha-androst-3beta,5,6beta-triol blocks hypoxia/reoxygenation-induced neuronal injuries via protection of mitochondrial function. Steroids 78(10):996–1002. https://doi.org/10.1016/j.steroids.2013.06.004

Article  CAS  PubMed  Google Scholar 

Tang L, Yan M, Leng T, Yin W, Cai S, Duan S, Zhu W, Lin S et al (2018) Cholestane-3β, 5α, 6β-triol suppresses neuronal hyperexcitability via binding to voltage-gated sodium channels. Biochem Biophys Res Commun 496(1):95–100. https://doi.org/10.1016/j.bbrc.2018.01.004

Article  CAS  PubMed 

Comments (0)

No login
gif