Gupta B, Johnson NW, Kumar N (2016) Global epidemiology of head and neck cancers: a continuing challenge. Oncology 91(1):13–23. https://doi.org/10.1159/000446117
Rube CE, Raid S, Palm J, Rube C (2023) Radiation-induced brain injury: age dependency of neurocognitive dysfunction following radiotherapy. Cancers (Basel) 15(11):2999. https://doi.org/10.3390/cancers15112999
Wilke C, Grosshans D, Duman J, Brown P, Li J (2018) Radiation-induced cognitive toxicity: pathophysiology and interventions to reduce toxicity in adults. Neuro Oncol 20(5):597–607. https://doi.org/10.1093/neuonc/nox195
Article CAS PubMed Google Scholar
Lin X, Tang L, Li M, Wang M, Guo Z, Lv X, Qiu Y (2021) Irradiation-related longitudinal white matter atrophy underlies cognitive impairment in patients with nasopharyngeal carcinoma. Brain Imaging Behav 15(5):2426–2435
Chang YQ, Zhou GJ, Wen HM, He DQ, Xu CL, Chen YR, Li YH, Chen SX et al (2023) Treatment of radiation-induced brain injury with bisdemethoxycurcumin. Neural Regen Res 18(2):416–421. https://doi.org/10.4103/1673-5374.346549
Article CAS PubMed Google Scholar
Yang X, Ren H, Fu JJOM, Longevity C (2021) Treatment of radiation-induced brain necrosis. Oxid Med Cell Longev 2021:4793517
Article PubMed PubMed Central Google Scholar
Zheng B, Lin J, Li Y, Zhuo X, Huang X, Shen Q, Tang Y (2019) Predictors of the therapeutic effect of corticosteroids on radiation-induced optic neuropathy following nasopharyngeal carcinoma. Support Care Cancer 27:4213–4219
Xu Y, Rong X, Hu W, Huang X, Li Y, Zheng D, Cai Z et al (2018) Bevacizumab monotherapy reduces radiation-induced brain necrosis in nasopharyngeal carcinoma patients: a randomized controlled trial. Int J Radiat Oncol Biol Phys 101(5):1087–1095
Article CAS PubMed Google Scholar
Vaios EJ, Batich KA, Buckley AF, Dunn-Pirio A, Patel MP, Kirkpatrick JP, Goudar R, Peters KB (2022) Resolution of radiation necrosis with bevacizumab following radiation therapy for primary CNS lymphoma. Oncotarget 13:576–582
Article PubMed PubMed Central Google Scholar
Li Y, Huang X, Jiang J, Hu W, Hu J, Cai J, Rong X, Cheng J et al (2018) Clinical variables for prediction of the therapeutic effects of bevacizumab monotherapy in nasopharyngeal carcinoma patients with radiation-induced brain necrosis. Int J Radiat Oncol Biol Phys 100(3):621–629. https://doi.org/10.1016/j.ijrobp.2017.11.023
Article CAS PubMed Google Scholar
Voss M, Wenger KJ, Fokas E, Forster M-T, Steinbach JP, Ronellenfitsch MW (2021) Single-shot bevacizumab for cerebral radiation injury. BMC Neurol 21:1–7
Turnquist C, Harris BT, Harris CC (2020) Radiation-induced brain injury: current concepts and therapeutic strategies targeting neuroinflammation. Neuriincol Adv 2(1):vdaa057
Lumniczky K, Szatmári T, Sáfrány G (2017) Ionizing radiation-induced immune and inflammatory reactions in the brain. Front Immunol 8:517. https://doi.org/10.3389/fimmu.2017.00517
Article CAS PubMed PubMed Central Google Scholar
Luo N, Zhu W, Li X, Fu M, Peng X, Yang F, Zhang Y, Yin H et al (2022) Impact of gut microbiota on radiation-associated cognitive dysfunction and neuroinflammation in mice. Radiat Res 197(4):350–364
Liu Q, Huang Y, Duan M, Yang Q, Ren B, Tang F (2022) Microglia as therapeutic target for radiation-induced brain injury. Int J Mol Sci 23(15):8286
Article CAS PubMed PubMed Central Google Scholar
Balentova S, Adamkov M (2015) Molecular, cellular and functional effects of radiation-induced brain injury: a review. Int J Mol Sci 16(11):27796–27815
Article CAS PubMed PubMed Central Google Scholar
Wang J, Pan H, Lin Z, Xiong C, Wei C, Li H, Tong F, Dong X (2021) Neuroprotective effect of fractalkine on radiation-induced brain injury through promoting the M2 polarization of microglia. Mol Neurobiol 58:1074–1087
Article CAS PubMed Google Scholar
Zhang Z, Jiang J, He Y, Cai J, Xie J, Wu M, Xing M, Zhang Z, Chang H et al (2022) Pregabalin mitigates microglial activation and neuronal injury by inhibiting HMGB1 signaling pathway in radiation-induced brain injury. J Neuroinflammation 19(1):231. https://doi.org/10.1186/s12974-022-02596-7
Article CAS PubMed PubMed Central Google Scholar
He B, Wang X, He Y, Li H, Yang Y, Shi Z, Liu Q, Wu M et al (2020) Gamma ray-induced glial activation and neuronal loss occur before the delayed onset of brain necrosis. Faseb j 34(10):13361–13375. https://doi.org/10.1096/fj.202000365RR
Article CAS PubMed Google Scholar
Li X, Chen X, Chen J, Zhou S, Wen J, Huang Y, Yan G, Zhang JJ (2015) Synthesis and neuroprotection of 5α-androst-3β, 5, 6β-triol derivatives. Ther Targets Neurol Dis 2:e831
Sun HJ, Xue DD, Lu BZ, Li Y, Sheng LX, Zhu Z, Zhou YW, Zhang JX, Lin GJ, Lin SZ, Yan GM, Chen YP, Yin W (2019) A novel synthetic steroid of 2β,3α,5α-trihydroxy-androst-6-one alleviates the loss of rat retinal ganglion cells caused by acute intraocular hypertension via inhibiting the inflammatory activation of microglia. Molecules 24(2):252. https://doi.org/10.3390/molecules24020252
Xue D, Wei C, Zhou Y, Wang K, Zhou Y, Chen C, Li Y, Sheng L et al (2022) TRIOL inhibits rapid intracellular acidification and cerebral ischemic injury: the role of glutamate in neuronal metabolic reprogramming. ACS Chem Neurosci 13(14):2110–2121. https://doi.org/10.1021/acschemneuro.2c00119
Article CAS PubMed Google Scholar
Kutsch M, Coers J (2021) Human guanylate binding proteins: nanomachines orchestrating host defense. FEBS J 288(20):5826–5849. https://doi.org/10.1111/febs.15662
Article CAS PubMed PubMed Central Google Scholar
Liu P, Ye L, Ren Y, Zhao G, Zhang Y, Lu S, Li Q, Wu C et al (2023) Chemotherapy-induced phlebitis via the GBP5/NLRP3 inflammasome axis and the therapeutic effect of aescin. Br J Pharmacol 180(8):1132–1147. https://doi.org/10.1111/bph.16002
Article CAS PubMed Google Scholar
Zhou L, Zhao H, Zhao H, Meng X, Zhao Z, Xie H, Li J, Tang Y et al (2023) GBP5 exacerbates rosacea-like skin inflammation by skewing macrophage polarization towards M1 phenotype through the NF-κB signalling pathway. J Europ Acad Dermatol Venereol: JEADV 37(4):796–809. https://doi.org/10.1111/jdv.18725
Shenoy AR, Wellington DA, Kumar P, Kassa H, Booth CJ, Cresswell P, MacMicking JD (2012) GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science 336(6080):481–485. https://doi.org/10.1126/science.1217141
Article CAS PubMed Google Scholar
Tang L, Wang Y, Leng T, Sun H, Zhou Y, Zhu W, Qiu P, Zhang J et al (2015) Cholesterol metabolite cholestane-3beta,5alpha,6beta-triol suppresses epileptic seizures by negative modulation of voltage-gated sodium channels. Steroids 98:166–172. https://doi.org/10.1016/j.steroids.2014.12.025
Article CAS PubMed Google Scholar
Zhang P, Chen JS, Li QY, Sheng LX, Gao YX, Lu BZ, Zhu WB, Zhan XY et al (2020) Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys. Zool Res 41(1):3–19. https://doi.org/10.24272/j.issn.2095-8137.2020.012
Article CAS PubMed PubMed Central Google Scholar
Tang L, Yan M, Leng T, Yin W, Cai S, Duan S, Zhu W, Lin S et al (2018) Cholestane-3beta, 5alpha, 6beta-triol suppresses neuronal hyperexcitability via binding to voltage-gated sodium channels. Biochem Biophys Res Commun 496(1):95–100. https://doi.org/10.1016/j.bbrc.2018.01.004
Article CAS PubMed Google Scholar
Shi Z, Yu P, Lin WJ, Chen S, Hu X, Chen S, Cheng J, Liu Q et al (2023) Microglia drive transient insult-induced brain injury by chemotactic recruitment of CD8(+) T lymphocytes. Neuron 111(5):696-710e 699. https://doi.org/10.1016/j.neuron.2022.12.009
Article CAS PubMed Google Scholar
Sun HJ, Xue DD, Lu BZ, Li Y, Sheng LX, Zhu Z, Zhou YW, et al. (2019) A novel synthetic steroid of 2beta,3alpha,5alpha-trihydroxy-androst-6-one alleviates the loss of rat retinal ganglion cells caused by acute intraocular hypertension via inhibiting the inflammatory activation of microglia. Molecules 24(2):252. https://doi.org/10.3390/molecules24020252
Jeyaretna DS, Curry WT Jr, Batchelor TT, Stemmer-Rachamimov A, Plotkin SR (2011) Exacerbation of cerebral radiation necrosis by bevacizumab. J Clin Oncol: Off J Amer Soc Clin Oncol 29(7):e159-162. https://doi.org/10.1200/jco.2010.31.4815
Li Q, Barres BA (2018) Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 18(4):225–242
Article CAS PubMed Google Scholar
Kim S, Chung H, Ngoc Mai H, Nam Y, Shin SJ, Park YH, Chung MJ, Lee JK et al (2020) Low-dose ionizing radiation modulates microglia phenotypes in the models of Alzheimer’s disease. Int J Mol Sci 21(12):4532
Article CAS PubMed PubMed Central Google Scholar
Chen J, Leng T, Chen W, Yan M, Yin W, Huang Y, Lin S, Duan D et al (2013) A synthetic steroid 5alpha-androst-3beta,5,6beta-triol blocks hypoxia/reoxygenation-induced neuronal injuries via protection of mitochondrial function. Steroids 78(10):996–1002. https://doi.org/10.1016/j.steroids.2013.06.004
Article CAS PubMed Google Scholar
Tang L, Yan M, Leng T, Yin W, Cai S, Duan S, Zhu W, Lin S et al (2018) Cholestane-3β, 5α, 6β-triol suppresses neuronal hyperexcitability via binding to voltage-gated sodium channels. Biochem Biophys Res Commun 496(1):95–100. https://doi.org/10.1016/j.bbrc.2018.01.004
Comments (0)