A New Highly Sensitive Optical Sensor Based on Congo-Red for the Determination of Thorium (IV) in Aqueous Solution

Huang X, Xia L, Li G. Recent progress of molecularly imprinted optical sensors. Chemosensors. 2023;11:168–91.

Article  CAS  Google Scholar 

Carneiro SV, Oliveira JJP, Rodrigues VSF, Lima JPO, do Nascimento JHO, Santos-Oliveira R, Fechine LMUD, Freire RM, Fechine PBA. Recent advances in nanostructured materials: a look at the applications in optical chemical sensing. Mater Today Nano. 2023;22: 100345.

Article  CAS  Google Scholar 

Li Z, Zhang W, Xing F. Graphene optical biosensors. Int J Mol Sci. 2019;20:2461–94.

Article  PubMed  PubMed Central  Google Scholar 

Jali MH, Rahim HRA, Md Johari MA, Baharom MF, Ahmad A, Yusof HHM, Harun SW. Optical microfiber sensor: a review. J Phys Conf Ser. 2021;2075: 012021.

Article  Google Scholar 

Subbanna BB, Choudhary K, Singh S, Kumar S. 2D material-based optical sensors: a review. ISSS J Micro Smart Syst. 2022;11:169–77.

Article  Google Scholar 

Yan X, Li H, Su X. Review of optical sensors for pesticides. TrAC Trends Anal Chem. 2018;103:1–20.

Article  CAS  Google Scholar 

Nazri NAA, Azeman NH, Luo Y, Bakar AA. Carbon quantum dots for optical sensor applications: a review. Opt Laser Technol. 2021;139: 106928.

Article  CAS  Google Scholar 

Li M, Cushing SK, Wu N. Plasmon-enhanced optical sensors: a review. Analyst. 2015;140:386–406.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lou J, Wang Y, Tong L. Microfiber optical sensors: a review. Sensors. 2014;14:5823–44.

Article  PubMed  PubMed Central  Google Scholar 

Hou Y, Lv CC, Guo YL, Ma XH, Liu W, Jin Y, Li BX, Yang M, Yao SY. Recent advances and applications in paper-based devices for point-of-care testing. J Anal Test. 2022;6:247–73.

Article  PubMed  PubMed Central  Google Scholar 

Bisht A, Mishra A, Bisht H, Tripathi RM. Nanomaterial based biosensors for detection of viruses including SARS-CoV-2: a review. J Anal Test. 2021;5:327–40.

Article  PubMed  PubMed Central  Google Scholar 

Li YX, Qin HY, Hu C, Sun MM, Li PY, Liu H, Li JC, Li ZB, Wu LD, Zhu J. Research progress of nanomaterials-based sensors for food safety. J Anal Test. 2022;6:431–40.

Article  Google Scholar 

Jassim AH, Mohammad RK, Ahmed LM, Aboud LH. Study the optical properties of Congo red dye. AIP Conf Proc. 2022;2547: 030002.

Article  CAS  Google Scholar 

Espargaró A, Llabrés S, Saupe SJ, Curutchet C, Luque FJ, Sabaté R. On the binding of Congo red to amyloid fibrils. Angew Chem Int Ed. 2020;59:8104–7.

Article  Google Scholar 

Mahmut M, Yimit A, Abudukayum A, Mamut M, Itoh K. Highly sensitive and selective optical HCI gas sensor based on polymer thin film with immobilized Congo red. Sens Lett. 2008;6:290–3.

Article  CAS  Google Scholar 

Salmani M, Rounaghi GH, Chamsaz M. An optical sensor for determination of low pH values based on covalent immobilization of Congo red on triacetyl cellulose films via epichlorohydrin. Sens Actuators B Chem. 2018;254:177–81.

Article  Google Scholar 

Walcarius A, Collinson MM. Analytical chemistry with silica sol-gels: traditional routes to new materials for chemical analysis. Annu Rev Anal Chem. 2009;2:121–43.

Article  CAS  Google Scholar 

Zhang J, Zhou L. Preparation and optimization of optical pH sensor based on sol-gel. Sensors. 2018;18:3195–31108.

Article  PubMed  PubMed Central  Google Scholar 

Brinker CJ, Hurd AJ, Schunk PR, Frye GC, Ashley CS. Review of sol-gel thin film formation. J Non Cryst Solids. 1992;147–148:424–36.

Article  Google Scholar 

Bokov D, Turki Jalil A, Chupradit S, Suksatan W, Javed Ansari M, Shewael IH, Valiev GH, Kianfar E. Nanomaterial by sol-gel method: synthesis and application. Adv Mater Sci Eng. 2021;2021:5102014.

Article  Google Scholar 

Sakka S. Birth of the sol–gel method: early history. J Solgel Sci Technol. 2022;102:478–81.

Article  CAS  Google Scholar 

Sakka S. History of the sol-gel chemistry and technology. In: Handbook of sol-gel science and technology: processing, characterization and applications; 2018. p. 3–29.

Shtangeeva I. Trace and ultratrace elements in plants and soil (Advances in Ecological Sciences). Southampton: WIT Press; 2004.

Google Scholar 

Santschi PH, Murray JW, Baskaran M, Benitez-Nelson CR, Guo LD, Hung CC, Lamborg C, Moran SB, Passow U, Roy-Barman M. Thorium speciation in seawater. Mar Chem. 2006;100:250–68.

Article  CAS  Google Scholar 

Guo G, Lu Y, Yang D, Li X, Gong M. Purification of thorium by precipitation. J Radioanal Nucl Chem. 2021;327:667–71.

Article  CAS  Google Scholar 

Tutson CD, Gorden AEV. Thorium coordination: a comprehensive review based on coordination number. Coord Chem Rev. 2017;333:27–43.

Article  CAS  Google Scholar 

Fouad HK, Abu Elenein SA, Elrakaiby RM, Abdulmoteleb SS. A developed spectrophotometric method for thorium determination using alizarin red S dye in different types of its bearing rocks. Int J Sci Res. 2015;4:1611–5.

Google Scholar 

Rastegarzadeh S, Pourreza N, Saeedi I. An optical chemical sensor for thorium (IV) determination based on Thorin. J Hazard Mater. 2010;173:110–4.

Article  CAS  PubMed  Google Scholar 

El-Hay SSA, Gouda AA. Determination of thorium(IV) in real samples by spectrophotometry after micelle-mediated cloud point extraction. J Radioanal Nucl Chem. 2016;310:191–200.

Article  Google Scholar 

Akl ZF, Ali TA. Direct analysis of thorium(IV) ions concentration in water samples using a new carbon paste electrode. J Iran Chem Soc. 2022;19:4627–35.

Article  CAS  Google Scholar 

Soltani N, Haddadi H, Asgari M, Rajabzadeh N. Adsorptive stripping voltammetric detection of thorium on the multi-walled carbon nanotube modified screen printed electrode. Sens Actuators B Chem. 2015;220:1212–6.

Article  CAS  Google Scholar 

Akhter P, Orfi SD, Mohammad D, Kawamura H, Ahmad N. Analytical procedure for the determination of thorium, zinc and potassium in diet samples. J Radioanal Nucl Chem. 2002;253:317–9.

Article  CAS  Google Scholar 

Liu Y, Xiao G, Jones RL. Rapid determination of thorium in urine by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS). J Radioanal Nucl Chem. 2022;331:3957–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wen J, Dong L, Hu S, Li W, Li S, Wang X. Fluorogenic thorium sensors based on 2,6-pyridinedicarboxylic acid-substituted tetraphenylethenes with aggregation-induced emission characteristics. Chem Asian J. 2016;11:49–53.

Article  CAS  PubMed  Google Scholar 

Misra NL, Dhara S, Adya VC, Godbole SV, Singh Mudher KD, Aggarwal SK. Trace element determination in thorium oxide using total reflection X-ray fluorescence spectrometry. Spectrochim Acta Part B At Spectrosc. 2008;63:81–5.

Article  Google Scholar 

Aggarwal SK. A review on the mass spectrometric analysis of thorium. Radiochim Acta. 2016;104:445–55.

Article  CAS  Google Scholar 

Gujar RB, Mohapatra PK, Iqbal M, Huskens J, Verboom W. Selective uptake of thorium(IV) from nitric acid medium using two extraction chromatographic resins based on diglycolamide-calix[4]arenes: application to thorium-uranyl separation in an actual sample. J Chromatogr A. 2021;1653: 462401.

Article  CAS  PubMed  Google Scholar 

Mishra DG, Acharya R, Swain KK, Joshi RM, Joshi VM, Verma PC, Hegde AG, Reddy AVR. Determination of thorium concentrations in soil and sand samples using instrumental neutron activation analysis. J Radioanal Nucl Chem. 2012;294:333–6.

Article  CAS  Google Scholar 

Benedik L, Pilar AM, Prosen H, Jaćimović R, Povinec PP. Determination of ultra-trace levels of uranium and thorium in electrolytic copper using radiochemical neutron activation analysis. Appl Radiat Isot. 2021;175: 109801.

Article  CAS  PubMed  Google Scholar 

Yari A, Shiravandi A, Moradi S. Highly selective sol-gel derived optical sensor using 2,6-dichlorophenolindophenol for the sensitive determination of aqueous iron(III). Instrum Sci Technol. 2023;51:621–33.

Article  CAS  Google Scholar 

Wojdyr M. Fityk: a general-purpose peak fitting program. J Appl Cryst. 2010;43:1126–8.

Article  CAS  Google Scholar 

Sharma S, Rahman N, Azmi SNH. Determination of thorium(IV) with rifampicin in synthetic mixture and soil samples by spectrophotometry. Arab J Chem. 2016;9:S1163–9.

Article  Google Scholar 

Orabi AH, Abdou AA, Ahmed SH, Mahmoud WH, Weheish HL. A new spectrophotometric method for Thorium determination using 1,4-dihydroxyanthraquinone. J Anal Chem. 2021;76:322–9.

Article  CAS  Google Scholar 

Elabd AA, Elhefnawy OA. A new chemosensor doped sol gel for Thorium(IV) determination. Z Phys Chem. 2023;237:993–1011.

Article  CAS  Google Scholar 

Falila NI. Application of thiazole yellow G chromogenic dye for spectrophotometric determination of some valuable elements in diversified rock types. Radiochemistry. 2022;64:379–92.

Comments (0)

No login
gif