Huang X, Xia L, Li G. Recent progress of molecularly imprinted optical sensors. Chemosensors. 2023;11:168–91.
Carneiro SV, Oliveira JJP, Rodrigues VSF, Lima JPO, do Nascimento JHO, Santos-Oliveira R, Fechine LMUD, Freire RM, Fechine PBA. Recent advances in nanostructured materials: a look at the applications in optical chemical sensing. Mater Today Nano. 2023;22: 100345.
Li Z, Zhang W, Xing F. Graphene optical biosensors. Int J Mol Sci. 2019;20:2461–94.
Article PubMed PubMed Central Google Scholar
Jali MH, Rahim HRA, Md Johari MA, Baharom MF, Ahmad A, Yusof HHM, Harun SW. Optical microfiber sensor: a review. J Phys Conf Ser. 2021;2075: 012021.
Subbanna BB, Choudhary K, Singh S, Kumar S. 2D material-based optical sensors: a review. ISSS J Micro Smart Syst. 2022;11:169–77.
Yan X, Li H, Su X. Review of optical sensors for pesticides. TrAC Trends Anal Chem. 2018;103:1–20.
Nazri NAA, Azeman NH, Luo Y, Bakar AA. Carbon quantum dots for optical sensor applications: a review. Opt Laser Technol. 2021;139: 106928.
Li M, Cushing SK, Wu N. Plasmon-enhanced optical sensors: a review. Analyst. 2015;140:386–406.
Article CAS PubMed PubMed Central Google Scholar
Lou J, Wang Y, Tong L. Microfiber optical sensors: a review. Sensors. 2014;14:5823–44.
Article PubMed PubMed Central Google Scholar
Hou Y, Lv CC, Guo YL, Ma XH, Liu W, Jin Y, Li BX, Yang M, Yao SY. Recent advances and applications in paper-based devices for point-of-care testing. J Anal Test. 2022;6:247–73.
Article PubMed PubMed Central Google Scholar
Bisht A, Mishra A, Bisht H, Tripathi RM. Nanomaterial based biosensors for detection of viruses including SARS-CoV-2: a review. J Anal Test. 2021;5:327–40.
Article PubMed PubMed Central Google Scholar
Li YX, Qin HY, Hu C, Sun MM, Li PY, Liu H, Li JC, Li ZB, Wu LD, Zhu J. Research progress of nanomaterials-based sensors for food safety. J Anal Test. 2022;6:431–40.
Jassim AH, Mohammad RK, Ahmed LM, Aboud LH. Study the optical properties of Congo red dye. AIP Conf Proc. 2022;2547: 030002.
Espargaró A, Llabrés S, Saupe SJ, Curutchet C, Luque FJ, Sabaté R. On the binding of Congo red to amyloid fibrils. Angew Chem Int Ed. 2020;59:8104–7.
Mahmut M, Yimit A, Abudukayum A, Mamut M, Itoh K. Highly sensitive and selective optical HCI gas sensor based on polymer thin film with immobilized Congo red. Sens Lett. 2008;6:290–3.
Salmani M, Rounaghi GH, Chamsaz M. An optical sensor for determination of low pH values based on covalent immobilization of Congo red on triacetyl cellulose films via epichlorohydrin. Sens Actuators B Chem. 2018;254:177–81.
Walcarius A, Collinson MM. Analytical chemistry with silica sol-gels: traditional routes to new materials for chemical analysis. Annu Rev Anal Chem. 2009;2:121–43.
Zhang J, Zhou L. Preparation and optimization of optical pH sensor based on sol-gel. Sensors. 2018;18:3195–31108.
Article PubMed PubMed Central Google Scholar
Brinker CJ, Hurd AJ, Schunk PR, Frye GC, Ashley CS. Review of sol-gel thin film formation. J Non Cryst Solids. 1992;147–148:424–36.
Bokov D, Turki Jalil A, Chupradit S, Suksatan W, Javed Ansari M, Shewael IH, Valiev GH, Kianfar E. Nanomaterial by sol-gel method: synthesis and application. Adv Mater Sci Eng. 2021;2021:5102014.
Sakka S. Birth of the sol–gel method: early history. J Solgel Sci Technol. 2022;102:478–81.
Sakka S. History of the sol-gel chemistry and technology. In: Handbook of sol-gel science and technology: processing, characterization and applications; 2018. p. 3–29.
Shtangeeva I. Trace and ultratrace elements in plants and soil (Advances in Ecological Sciences). Southampton: WIT Press; 2004.
Santschi PH, Murray JW, Baskaran M, Benitez-Nelson CR, Guo LD, Hung CC, Lamborg C, Moran SB, Passow U, Roy-Barman M. Thorium speciation in seawater. Mar Chem. 2006;100:250–68.
Guo G, Lu Y, Yang D, Li X, Gong M. Purification of thorium by precipitation. J Radioanal Nucl Chem. 2021;327:667–71.
Tutson CD, Gorden AEV. Thorium coordination: a comprehensive review based on coordination number. Coord Chem Rev. 2017;333:27–43.
Fouad HK, Abu Elenein SA, Elrakaiby RM, Abdulmoteleb SS. A developed spectrophotometric method for thorium determination using alizarin red S dye in different types of its bearing rocks. Int J Sci Res. 2015;4:1611–5.
Rastegarzadeh S, Pourreza N, Saeedi I. An optical chemical sensor for thorium (IV) determination based on Thorin. J Hazard Mater. 2010;173:110–4.
Article CAS PubMed Google Scholar
El-Hay SSA, Gouda AA. Determination of thorium(IV) in real samples by spectrophotometry after micelle-mediated cloud point extraction. J Radioanal Nucl Chem. 2016;310:191–200.
Akl ZF, Ali TA. Direct analysis of thorium(IV) ions concentration in water samples using a new carbon paste electrode. J Iran Chem Soc. 2022;19:4627–35.
Soltani N, Haddadi H, Asgari M, Rajabzadeh N. Adsorptive stripping voltammetric detection of thorium on the multi-walled carbon nanotube modified screen printed electrode. Sens Actuators B Chem. 2015;220:1212–6.
Akhter P, Orfi SD, Mohammad D, Kawamura H, Ahmad N. Analytical procedure for the determination of thorium, zinc and potassium in diet samples. J Radioanal Nucl Chem. 2002;253:317–9.
Liu Y, Xiao G, Jones RL. Rapid determination of thorium in urine by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS). J Radioanal Nucl Chem. 2022;331:3957–64.
Article CAS PubMed PubMed Central Google Scholar
Wen J, Dong L, Hu S, Li W, Li S, Wang X. Fluorogenic thorium sensors based on 2,6-pyridinedicarboxylic acid-substituted tetraphenylethenes with aggregation-induced emission characteristics. Chem Asian J. 2016;11:49–53.
Article CAS PubMed Google Scholar
Misra NL, Dhara S, Adya VC, Godbole SV, Singh Mudher KD, Aggarwal SK. Trace element determination in thorium oxide using total reflection X-ray fluorescence spectrometry. Spectrochim Acta Part B At Spectrosc. 2008;63:81–5.
Aggarwal SK. A review on the mass spectrometric analysis of thorium. Radiochim Acta. 2016;104:445–55.
Gujar RB, Mohapatra PK, Iqbal M, Huskens J, Verboom W. Selective uptake of thorium(IV) from nitric acid medium using two extraction chromatographic resins based on diglycolamide-calix[4]arenes: application to thorium-uranyl separation in an actual sample. J Chromatogr A. 2021;1653: 462401.
Article CAS PubMed Google Scholar
Mishra DG, Acharya R, Swain KK, Joshi RM, Joshi VM, Verma PC, Hegde AG, Reddy AVR. Determination of thorium concentrations in soil and sand samples using instrumental neutron activation analysis. J Radioanal Nucl Chem. 2012;294:333–6.
Benedik L, Pilar AM, Prosen H, Jaćimović R, Povinec PP. Determination of ultra-trace levels of uranium and thorium in electrolytic copper using radiochemical neutron activation analysis. Appl Radiat Isot. 2021;175: 109801.
Article CAS PubMed Google Scholar
Yari A, Shiravandi A, Moradi S. Highly selective sol-gel derived optical sensor using 2,6-dichlorophenolindophenol for the sensitive determination of aqueous iron(III). Instrum Sci Technol. 2023;51:621–33.
Wojdyr M. Fityk: a general-purpose peak fitting program. J Appl Cryst. 2010;43:1126–8.
Sharma S, Rahman N, Azmi SNH. Determination of thorium(IV) with rifampicin in synthetic mixture and soil samples by spectrophotometry. Arab J Chem. 2016;9:S1163–9.
Orabi AH, Abdou AA, Ahmed SH, Mahmoud WH, Weheish HL. A new spectrophotometric method for Thorium determination using 1,4-dihydroxyanthraquinone. J Anal Chem. 2021;76:322–9.
Elabd AA, Elhefnawy OA. A new chemosensor doped sol gel for Thorium(IV) determination. Z Phys Chem. 2023;237:993–1011.
Falila NI. Application of thiazole yellow G chromogenic dye for spectrophotometric determination of some valuable elements in diversified rock types. Radiochemistry. 2022;64:379–92.
Comments (0)