Mullaliu A, Sougrati M-T, Louvain N, Aquilanti G, Doublet M-L, Stievano L, Giorgetti M. The electrochemical activity of the nitrosyl ligand in copper nitroprusside: a new possible redox mechanism for lithium battery electrode materials? Electrochim Acta. 2017;257:364–71.
Balmaseda J, Reguera E, Gomez A, Roque J, Vazquez C, Autie M. On the microporous nature of transition metal nitroprussides. J Phys Chem B. 2003;107(41):11360–9.
Gómez A, Rodríguez-Hernández J, Reguera E. Unique coordination in metal nitroprussides: the structure of Cu[Fe(CN)5NO]⋅2H2O and Cu[Fe(CN)5NO]. J Chem Crystallogr. 2004;34:893–903.
Mullaliu A, Aquilanti G, Plaisier JR, Giorgetti M. Cross-investigation on copper nitroprusside: combining XRD and XAS for in-depth structural insights. Condensed Matter. 2021;6(3):27.
Carapuça HM, Filipe OM, Simão JE, Fogg AG. Electrochemical studies of nitroprusside in the presence of copper (II): formation of Cu (I) reduced nitroprusside species. J Electroanal Chem. 2000;480(1–2):84–93.
Mullaliu A, Stievano L, Aquilanti G, Plaisier JR, Cristol S, Giorgetti M. The peculiar redox mechanism of copper nitroprusside disclosed by a multi-technique approach. Radiat Phys Chem. 2020;175: 108336.
Mullaliu A, Aquilanti G, Stievano L, Conti P, Plaisier JR, Cristol S, Giorgetti M. Beyond the oxygen redox strategy in designing cathode material for batteries: Dynamics of a prussian blue-like cathode revealed by operando X-ray diffraction and X-ray absorption fine structure and by a theoretical approach. J Phys Chem C. 2019;123(14):8588–98.
Reguera L, Balmaseda J, Krap C, Reguera E. Hydrogen storage in porous transition metals nitroprussides. J Phys Chem C. 2008;112(28):10490–501.
Roque-Malherbe R, Lozano C, Polanco R, Marquez F, Lugo F, Hernandez-Maldonado A, Primera-Pedrozo J. Study of carbon dioxide adsorption on a Cu-nitroprusside polymorph. J Solid State Chem. 2011;184(5):1236–44.
Rahut S, Patra SK, Basu JK. Surfactant assisted self assembly of novel ultrathin Cu [Fe (CN)5NO] nanosheets for enhanced electrocatalytic oxygen evolution: effect of nanosheet thickness. Electrochim Acta. 2018;265:202–8.
Carapuca HM, Simao JE, Fogg AG. Electrochemistry of the nitroprusside ion. From mechanistic studies to electrochemical analysis. Analyst. 1996;121(12):1801–4.
Jankhunthod S, Moonla C, Watwiangkham A, Suthirakun S, Siritanon T, Wannapaiboon S, Ngamchuea K. Understanding electrochemical and structural properties of copper hexacyanoferrate: application in hydrogen peroxide analysis. Electrochim Acta. 2021;394: 139147.
Wright AM, Hayton TW. Recent developments in late metal nitrosyl chemistry. Comments Inorg Chem. 2012;33(5–6):207–48.
Kałużna-Czaplińska J, Gątarek P, Chirumbolo S, Chartrand MS, Bjørklund G. How important is tryptophan in human health? Crit Rev Food Sci Nutr. 2019;59(1):72–88.
Comai S, Bertazzo A, Brughera M, Crotti S. Tryptophan in health and disease. Adv Clin Chem. 2020;95:165–218.
Article CAS PubMed Google Scholar
Liu X-H, Zhai X-Y. Role of tryptophan metabolism in cancers and therapeutic implications. Biochimie. 2021;182:131–9.
Article CAS PubMed Google Scholar
Widner B, Leblhuber F, Walli J, Tilz G, Demel U, Fuchs D. Tryptophan degradation and immune activation in Alzheimer’s disease. J Neural Transm. 2000;107:343–53.
Article CAS PubMed Google Scholar
Lovelace MD, Varney B, Sundaram G, Lennon MJ, Lim CK, Jacobs K, Guillemin GJ, Brew BJ. Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology. 2017;112:373–88.
Article CAS PubMed Google Scholar
Fernstrom JD. A perspective on the safety of supplemental tryptophan based on its metabolic fates. J Nutr. 2016;146(12):2601S-2608S.
Article CAS PubMed Google Scholar
Oketch-Rabah HA, Roe AL, Gurley BJ, Griffiths JC, Giancaspro GI. The importance of quality specifications in safety assessments of amino acids: the cases of L-tryptophan and L-citrulline. J Nutr. 2016;146(12):2643S-2651S.
Article CAS PubMed Google Scholar
Nasimi H, Madsen JS, Zedan AH, Malmendal A, Osther PJS, Alatraktchi FAA. Electrochemical sensors for screening of tyrosine and tryptophan as biomarkers for diseases: a narrative review. Microchem J. 2023;5:108737.
Rattanaumpa T, Maensiri S, Ngamchuea K. Microporous carbon in the selective electro-oxidation of molecular biomarkers: uric acid, ascorbic acid, and dopamine. RSC Adv. 2022;12(29):18709–21.
Article CAS PubMed PubMed Central Google Scholar
Ngamchuea K, Lin C, Batchelor-McAuley C, Compton RG. Supported microwires for electroanalysis: sensitive amperometric detection of reduced glutathione. Anal Chem. 2017;89(6):3780–6.
Article CAS PubMed Google Scholar
Ravel B, Newville M. Athena, artemis, hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat. 2005;12(4):537–41.
Article CAS PubMed Google Scholar
Jiang G, Wang J, Yang Y, Zhang G, Liu Y, Lin H, Zhang G, Li Y, Fan X. Fluorescent turn-on sensing of bacterial lipopolysaccharide in artificial urine sample with sensitivity down to nanomolar by tetraphenylethylene based aggregation induced emission molecule. Biosens Bioelectron. 2016;85:62–7.
Article CAS PubMed Google Scholar
Asakura D, Okubo M, Zhou H, Amemiya K, Okada K, Glans P-A, Jenkins CA, Arenholz E, Guo J. Anisotropic charge-transfer effects in the asymmetric Fe(CN)5NO octahedron of sodium nitroprusside: a soft X-ray absorption spectroscopy study. Phys Chem Chem Phys. 2014;16(15):7031–6.
Giorgetti M, Berrettoni M, Filipponi A, Kulesza PJ, Marassi R. Evidence of four-body contributions in the EXAFS spectrum of Na2Co[Fe(CN)6]. Chem Phys Lett. 1997;275(1–2):108–12.
Carapuça HM, Simao JE, Fogg AG. Comproportionation and disproportionation reactions in the electrochemical reduction of nitroprusside at a hanging mercury drop electrode in acidic solution. J Electroanal Chem. 1998;455(1–2):93–105.
Moonla C, Jankhunthod S, Ngamchuea K. Copper hexacyanoferrate as a novel electrode material in electrochemical detection of cumene hydroperoxide. J Electrochem Soc. 2021;168(11): 116507.
Kadhim M, Gamaj MI. Estimation of the diffusion coefficient and hydrodynamic radius (stokes radius) for inorganic ions in solution depending on molar conductivity as electro-analytical technique-a review. J Chem Rev. 2020;2(3):182–8.
Cano A, Rodríguez-Hernández J, Shchukarev A, Reguera E. Intercalation of pyrazine in layered copper nitroprusside: synthesis, crystal structure and XPS study. J Solid State Chem. 2019;273:1–10.
Dalirirad S, Steckl AJ. Lateral flow assay using aptamer-based sensing for on-site detection of dopamine in urine. Anal Biochem. 2020;596: 113637.
Article CAS PubMed Google Scholar
Abellán-Llobregat A, González-Gaitán C, Vidal L, Canals A, Morallon E. Portable electrochemical sensor based on 4-aminobenzoic acid-functionalized herringbone carbon nanotubes for the determination of ascorbic acid and uric acid in human fluids. Biosens Bioelectron. 2018;109:123–31.
Abellán-Llobregat A, Vidal L, Rodríguez-Amaro R, Berenguer-Murcia Á, Canals A, Morallon E. Au-IDA microelectrodes modified with Au-doped graphene oxide for the simultaneous determination of uric acid and ascorbic acid in urine samples. Electrochim Acta. 2017;227:275–84.
Khan MI, Zhang Q, Wang Y, Saud S, Liu W, Liu S, Kong H, Wang C, Uzzaman A, Xiao H. Portable electrophoresis titration chip model for sensing of uric acid in urine and blood by moving reaction boundary. Sens Actuators, B Chem. 2019;286:9–15.
Kałuzna-Czaplinska J, Michalska M, Rynkowski J. Determination of tryptophan in urine of autistic and healthy children by gas chromatography/mass spectrometry. Med Sci Monit. 2010;16(10):488–92.
Mao S, Li W, Long Y, Tu Y, Deng A. Sensitive electrochemical sensor of tryptophan based on Ag@ C core–shell nanocomposite modified glassy carbon electrode. Anal Chim Acta. 2012;738:35–40.
Article CAS PubMed Google Scholar
Xia X, Zheng Z, Zhang Y, Zhao X, Wang C. Synthesis of Ag-MoS2/chitosan nanocomposite and its application for catalytic oxidation of tryptophan. Sens Actuators, B Chem. 2014;192:42–50.
Tığ GA. Development of electrochemical sensor for detection of ascorbic acid, dopamine, uric acid and l-tryptophan based on Ag nanoparticles and poly (l-arginine)-graphene oxide composite. J Electroanal Chem. 2017;807:19–28.
Kooshki M, Abdollahi H, Bozorgzadeh S, Haghighi B. Second-order data obtained from differential pulse voltammetry: determination of tryptophan at a gold nanoparticles decorated multiwalled carbon nanotube modified glassy carbon electrode. Electrochim Acta. 2011;56(24):8618–24.
Comments (0)