A general copper-catalysed enantioconvergent C(sp3)–S cross-coupling via biomimetic radical homolytic substitution

Toru, T. & Bolm, C. (eds) Organosulfur Chemistry in Asymmetric Synthesis (Wiley, 2008).

Dénès, F., Pichowicz, M., Povie, G. & Renaud, P. Thiyl radicals in organic synthesis. Chem. Rev. 114, 2587–2693 (2014).

Article  PubMed  Google Scholar 

Dunbar, K. L., Scharf, D. H., Litomska, A. & Hertweck, C. Enzymatic carbon–sulfur bond formation in natural product biosynthesis. Chem. Rev. 117, 5521–5577 (2017).

Article  CAS  PubMed  Google Scholar 

Wang, N., Saidhareddy, P. & Jiang, X. Construction of sulfur-containing moieties in the total synthesis of natural products. Nat. Prod. Rep. 37, 246–275 (2020).

Article  PubMed  Google Scholar 

Scott, K. A. & Njardarson, J. T. Analysis of US FDA-approved drugs containing sulfur atoms. Top. Curr. Chem. 376, 5 (2018).

Article  Google Scholar 

Lamberth, C. Sulfur chemistry in crop protection. J. Sulfur Chem. 25, 39–62 (2004).

Article  CAS  Google Scholar 

Subramanian, H., Moorthy, R. & Sibi, M. P. Thiyl radicals: from simple radical additions to asymmetric catalysis. Angew. Chem. Int. Ed. 53, 13660–13662 (2014).

Article  CAS  Google Scholar 

McGarrigle, E. M. et al. Chalcogenides as organocatalysts. Chem. Rev. 107, 5841–5883 (2007).

Article  CAS  PubMed  Google Scholar 

Mellah, M., Voituriez, A. & Schulz, E. Chiral sulfur ligands for asymmetric catalysis. Chem. Rev. 107, 5133–5209 (2007).

Article  CAS  PubMed  Google Scholar 

Margalef, J. et al. Evolution in heterodonor P–N, P–S and P–O chiral ligands for preparing efficient catalysts for asymmetric catalysis. From design to applications. Coord. Chem. Rev. 446, 214120 (2021).

Article  CAS  Google Scholar 

Broderick, J. B., Duffus, B. R., Duschene, K. S. & Shepard, E. M. Radical S-adenosylmethionine enzymes. Chem. Rev. 114, 4229–4317 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakai, T. et al. The radical S-adenosyl-l-methionine enzyme QhpD catalyzes sequential formation of intra-protein sulfur-to-methylene carbon thioether bonds. J. Biol. Chem. 290, 11144–11166 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chauhan, P., Mahajan, S. & Enders, D. Organocatalytic carbon–sulfur bond-forming reactions. Chem. Rev. 114, 8807–8864 (2014).

Article  CAS  PubMed  Google Scholar 

Kikuchi, J. & Terada, M. Enantioconvergent substitution reactions of racemic electrophiles by organocatalysis. Chem. Eur. J. 27, 10215–10225 (2021).

Article  CAS  PubMed  Google Scholar 

Zhang, X. & Tan, C.-H. Stereospecific and stereoconvergent nucleophilic substitution reactions at tertiary carbon centers. Chem 7, 1451–1486 (2021).

Article  CAS  Google Scholar 

Yu, J.-S. et al. Catalytic enantioselective construction of sulfur-containing tetrasubstituted carbon stereocenters. ACS Catal. 6, 5319–5344 (2016).

Article  CAS  Google Scholar 

Zhu, C., Cai, Y. & Jiang, H. Recent advances for the synthesis of chiral sulfones with the sulfone moiety directly connected to the chiral center. Org. Chem. Front. 8, 5574–5589 (2021).

Article  CAS  Google Scholar 

Cheng, Q. et al. Iridium-catalyzed asymmetric allylic substitution reactions. Chem. Rev. 119, 1855–1969 (2019).

Article  CAS  PubMed  Google Scholar 

Choi, J., Martín-Gago, P. & Fu, G. C. Stereoconvergent arylations and alkenylations of unactivated alkyl electrophiles: catalytic enantioselective synthesis of secondary sulfonamides and sulfones. J. Am. Chem. Soc. 136, 12161–12165 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

He, S.-J. et al. Nickel-catalyzed enantioconvergent reductive hydroalkylation of olefins with α-heteroatom phosphorus or sulfur alkyl electrophiles. J. Am. Chem. Soc. 142, 214–221 (2020).

Article  CAS  PubMed  Google Scholar 

Xia, X. & Wang, Z. Cr-catalyzed diastereo- and enantioselective synthesis of β-hydroxy sulfides and selenides. ACS Catal. 12, 11152–11158 (2022).

Article  CAS  Google Scholar 

Sundaravelu, N., Sangeetha, S. & Sekar, G. Metal-catalyzed C–S bond formation using sulfur surrogates. Org. Biomol. Chem. 19, 1459–1482 (2021).

Article  CAS  PubMed  Google Scholar 

Hegedus, L. L. & McCabe, R. W. Catalyst poisoning. Catal. Rev. Sci. Eng. 23, 377–476 (2007).

Article  Google Scholar 

Evans, D. A., Miller, S. J., Lectka, T. & von Matt, P. Chiral bis(oxazoline)copper(II) complexes as Lewis acid catalysts for the enantioselective Diels–Alder reaction. J. Am. Chem. Soc. 121, 7559–7573 (1999).

Article  CAS  Google Scholar 

Trost, B. M., Krische, M. J., Radinov, R. & Zanoni, G. On asymmetric induction in allylic alkylation via enantiotopic facial discrimination. J. Am. Chem. Soc. 118, 6297–6298 (1996).

Article  CAS  Google Scholar 

Cai, A. & Kleij, A. W. Regio‐ and enantioselective preparation of chiral allylic sulfones featuring elusive quaternary stereocenters. Angew. Chem. Int. Ed. 58, 14944–14949 (2019).

Article  CAS  Google Scholar 

Khan, A., Zhao, H., Zhang, M., Khan, S. & Zhao, D. Regio- and enantioselective synthesis of sulfone-bearing quaternary carbon stereocenters by Pd-catalyzed allylic substitution. Angew. Chem. Int. Ed. 59, 1340–1345 (2020).

Article  CAS  Google Scholar 

Zhang, Q., Dong, D. & Zi, W. Palladium-catalyzed regio- and enantioselective hydrosulfonylation of 1,3-dienes with sulfinic acids: scope, mechanism, and origin of selectivity. J. Am. Chem. Soc. 142, 15860–15869 (2020).

Article  CAS  PubMed  Google Scholar 

Li, M.-M., Cheng, L., Xiao, L.-J., Xie, J.-H. & Zhou, Q.-L. Palladium-catalyzed asymmetric hydrosulfonylation of 1,3-dienes with sulfonyl hydrazides. Angew. Chem. Int. Ed. 60, 2948–2951 (2021).

Article  CAS  Google Scholar 

Pritzius, A. B. & Breit, B. Asymmetric rhodium-catalyzed addition of thiols to allenes: synthesis of branched allylic thioethers and sulfones. Angew. Chem. Int. Ed. 54, 3121–3125 (2015).

Article  CAS  Google Scholar 

Yang, X.-H., Davison, R. T. & Dong, V. M. Catalytic hydrothiolation: regio- and enantioselective coupling of thiols and dienes. J. Am. Chem. Soc. 140, 10443–10446 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han, X., Wang, M., Liang, Y., Zhao, Y. & Shi, Z. Regio- and enantioselective nucleophilic addition to gem-difluoroallenes. Nat. Synth. 1, 227–234 (2022).

Article  Google Scholar 

Ueda, M. & Hartwig, J. F. Iridium-catalyzed, regio- and enantioselective allylic substitution with aromatic and aliphatic sulfinates. Org. Lett. 12, 92–94 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

He, Z.-T. & Hartwig, J. F. Enantioselective α-functionalizations of ketones via allylic substitution of silyl enol ethers. Nat. Chem. 11, 177–183 (2019).

Article  CAS  PubMed  Google Scholar 

Roggen, M. & Carreira, E. M. Enantioselective allylic thioetherification: the effect of phosphoric acid diester on iridium-catalyzed enantioconvergent transformations. Angew. Chem. Int. Ed. 51, 8652–8655 (2012).

Article  Google Scholar 

Xu, B. et al. Highly enantioselective S–H bond insertion cooperatively catalyzed by dirhodium complexes and chiral spiro phosphoric acids. Chem. Sci. 5, 1442–1448 (2014).

Article  CAS  Google Scholar 

Cavell, K. J., Hill, J. O. & Magee, R. J. Standard enthalpy of formation of bis(diethyldithiocarbamato)copper(II) at 298 K and the copper–sulphur bond energy. J. Chem. Soc. Dalton Trans. 1638–1640 (1980).

Jarrett, J. T. The biosynthesis of thiol- and thioether-containing cofactors and secondary metabolites catalyzed by radical S-adenosylmethionine enzymes. J. Biol. Chem. 290, 3972–3979 (2015).

Article  CAS  PubMed  Google Scholar 

Taylor, A. M., Farrar, C. E. & Jarrett, J. T. 9-Mercaptodethiobiotin is formed as a competent catalytic intermediate by Escherichia coli biotin synthase. Biochemistry 47, 9309–9317 (2008).

Article  CAS  PubMed  Google Scholar 

Cicchillo, R. M. et al. Escherichia coli lipoyl synthase binds two distinct [4Fe–4S] clusters per polypeptide. Biochemistry 43, 11770–11781 (2004).

Article  CAS  PubMed  Google Scholar 

Grove, T. L. et al. Structural insights into thioether bond formation in the biosynthesis of sactipeptides. J. Am. Chem. Soc. 139, 11734–11744 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

MacMahon, T. J., Jackson, T. C. & Freiser, B. S. A gas-phase study of FeSn+ (n = 1–6). J. Am. Chem. Soc. 111, 421–427 (2002).

Article  Google Scholar 

He, J. et al.

Comments (0)

No login
gif