Toru, T. & Bolm, C. (eds) Organosulfur Chemistry in Asymmetric Synthesis (Wiley, 2008).
Dénès, F., Pichowicz, M., Povie, G. & Renaud, P. Thiyl radicals in organic synthesis. Chem. Rev. 114, 2587–2693 (2014).
Dunbar, K. L., Scharf, D. H., Litomska, A. & Hertweck, C. Enzymatic carbon–sulfur bond formation in natural product biosynthesis. Chem. Rev. 117, 5521–5577 (2017).
Article CAS PubMed Google Scholar
Wang, N., Saidhareddy, P. & Jiang, X. Construction of sulfur-containing moieties in the total synthesis of natural products. Nat. Prod. Rep. 37, 246–275 (2020).
Scott, K. A. & Njardarson, J. T. Analysis of US FDA-approved drugs containing sulfur atoms. Top. Curr. Chem. 376, 5 (2018).
Lamberth, C. Sulfur chemistry in crop protection. J. Sulfur Chem. 25, 39–62 (2004).
Subramanian, H., Moorthy, R. & Sibi, M. P. Thiyl radicals: from simple radical additions to asymmetric catalysis. Angew. Chem. Int. Ed. 53, 13660–13662 (2014).
McGarrigle, E. M. et al. Chalcogenides as organocatalysts. Chem. Rev. 107, 5841–5883 (2007).
Article CAS PubMed Google Scholar
Mellah, M., Voituriez, A. & Schulz, E. Chiral sulfur ligands for asymmetric catalysis. Chem. Rev. 107, 5133–5209 (2007).
Article CAS PubMed Google Scholar
Margalef, J. et al. Evolution in heterodonor P–N, P–S and P–O chiral ligands for preparing efficient catalysts for asymmetric catalysis. From design to applications. Coord. Chem. Rev. 446, 214120 (2021).
Broderick, J. B., Duffus, B. R., Duschene, K. S. & Shepard, E. M. Radical S-adenosylmethionine enzymes. Chem. Rev. 114, 4229–4317 (2014).
Article CAS PubMed PubMed Central Google Scholar
Nakai, T. et al. The radical S-adenosyl-l-methionine enzyme QhpD catalyzes sequential formation of intra-protein sulfur-to-methylene carbon thioether bonds. J. Biol. Chem. 290, 11144–11166 (2015).
Article CAS PubMed PubMed Central Google Scholar
Chauhan, P., Mahajan, S. & Enders, D. Organocatalytic carbon–sulfur bond-forming reactions. Chem. Rev. 114, 8807–8864 (2014).
Article CAS PubMed Google Scholar
Kikuchi, J. & Terada, M. Enantioconvergent substitution reactions of racemic electrophiles by organocatalysis. Chem. Eur. J. 27, 10215–10225 (2021).
Article CAS PubMed Google Scholar
Zhang, X. & Tan, C.-H. Stereospecific and stereoconvergent nucleophilic substitution reactions at tertiary carbon centers. Chem 7, 1451–1486 (2021).
Yu, J.-S. et al. Catalytic enantioselective construction of sulfur-containing tetrasubstituted carbon stereocenters. ACS Catal. 6, 5319–5344 (2016).
Zhu, C., Cai, Y. & Jiang, H. Recent advances for the synthesis of chiral sulfones with the sulfone moiety directly connected to the chiral center. Org. Chem. Front. 8, 5574–5589 (2021).
Cheng, Q. et al. Iridium-catalyzed asymmetric allylic substitution reactions. Chem. Rev. 119, 1855–1969 (2019).
Article CAS PubMed Google Scholar
Choi, J., Martín-Gago, P. & Fu, G. C. Stereoconvergent arylations and alkenylations of unactivated alkyl electrophiles: catalytic enantioselective synthesis of secondary sulfonamides and sulfones. J. Am. Chem. Soc. 136, 12161–12165 (2014).
Article CAS PubMed PubMed Central Google Scholar
He, S.-J. et al. Nickel-catalyzed enantioconvergent reductive hydroalkylation of olefins with α-heteroatom phosphorus or sulfur alkyl electrophiles. J. Am. Chem. Soc. 142, 214–221 (2020).
Article CAS PubMed Google Scholar
Xia, X. & Wang, Z. Cr-catalyzed diastereo- and enantioselective synthesis of β-hydroxy sulfides and selenides. ACS Catal. 12, 11152–11158 (2022).
Sundaravelu, N., Sangeetha, S. & Sekar, G. Metal-catalyzed C–S bond formation using sulfur surrogates. Org. Biomol. Chem. 19, 1459–1482 (2021).
Article CAS PubMed Google Scholar
Hegedus, L. L. & McCabe, R. W. Catalyst poisoning. Catal. Rev. Sci. Eng. 23, 377–476 (2007).
Evans, D. A., Miller, S. J., Lectka, T. & von Matt, P. Chiral bis(oxazoline)copper(II) complexes as Lewis acid catalysts for the enantioselective Diels–Alder reaction. J. Am. Chem. Soc. 121, 7559–7573 (1999).
Trost, B. M., Krische, M. J., Radinov, R. & Zanoni, G. On asymmetric induction in allylic alkylation via enantiotopic facial discrimination. J. Am. Chem. Soc. 118, 6297–6298 (1996).
Cai, A. & Kleij, A. W. Regio‐ and enantioselective preparation of chiral allylic sulfones featuring elusive quaternary stereocenters. Angew. Chem. Int. Ed. 58, 14944–14949 (2019).
Khan, A., Zhao, H., Zhang, M., Khan, S. & Zhao, D. Regio- and enantioselective synthesis of sulfone-bearing quaternary carbon stereocenters by Pd-catalyzed allylic substitution. Angew. Chem. Int. Ed. 59, 1340–1345 (2020).
Zhang, Q., Dong, D. & Zi, W. Palladium-catalyzed regio- and enantioselective hydrosulfonylation of 1,3-dienes with sulfinic acids: scope, mechanism, and origin of selectivity. J. Am. Chem. Soc. 142, 15860–15869 (2020).
Article CAS PubMed Google Scholar
Li, M.-M., Cheng, L., Xiao, L.-J., Xie, J.-H. & Zhou, Q.-L. Palladium-catalyzed asymmetric hydrosulfonylation of 1,3-dienes with sulfonyl hydrazides. Angew. Chem. Int. Ed. 60, 2948–2951 (2021).
Pritzius, A. B. & Breit, B. Asymmetric rhodium-catalyzed addition of thiols to allenes: synthesis of branched allylic thioethers and sulfones. Angew. Chem. Int. Ed. 54, 3121–3125 (2015).
Yang, X.-H., Davison, R. T. & Dong, V. M. Catalytic hydrothiolation: regio- and enantioselective coupling of thiols and dienes. J. Am. Chem. Soc. 140, 10443–10446 (2018).
Article CAS PubMed PubMed Central Google Scholar
Han, X., Wang, M., Liang, Y., Zhao, Y. & Shi, Z. Regio- and enantioselective nucleophilic addition to gem-difluoroallenes. Nat. Synth. 1, 227–234 (2022).
Ueda, M. & Hartwig, J. F. Iridium-catalyzed, regio- and enantioselective allylic substitution with aromatic and aliphatic sulfinates. Org. Lett. 12, 92–94 (2010).
Article CAS PubMed PubMed Central Google Scholar
He, Z.-T. & Hartwig, J. F. Enantioselective α-functionalizations of ketones via allylic substitution of silyl enol ethers. Nat. Chem. 11, 177–183 (2019).
Article CAS PubMed Google Scholar
Roggen, M. & Carreira, E. M. Enantioselective allylic thioetherification: the effect of phosphoric acid diester on iridium-catalyzed enantioconvergent transformations. Angew. Chem. Int. Ed. 51, 8652–8655 (2012).
Xu, B. et al. Highly enantioselective S–H bond insertion cooperatively catalyzed by dirhodium complexes and chiral spiro phosphoric acids. Chem. Sci. 5, 1442–1448 (2014).
Cavell, K. J., Hill, J. O. & Magee, R. J. Standard enthalpy of formation of bis(diethyldithiocarbamato)copper(II) at 298 K and the copper–sulphur bond energy. J. Chem. Soc. Dalton Trans. 1638–1640 (1980).
Jarrett, J. T. The biosynthesis of thiol- and thioether-containing cofactors and secondary metabolites catalyzed by radical S-adenosylmethionine enzymes. J. Biol. Chem. 290, 3972–3979 (2015).
Article CAS PubMed Google Scholar
Taylor, A. M., Farrar, C. E. & Jarrett, J. T. 9-Mercaptodethiobiotin is formed as a competent catalytic intermediate by Escherichia coli biotin synthase. Biochemistry 47, 9309–9317 (2008).
Article CAS PubMed Google Scholar
Cicchillo, R. M. et al. Escherichia coli lipoyl synthase binds two distinct [4Fe–4S] clusters per polypeptide. Biochemistry 43, 11770–11781 (2004).
Article CAS PubMed Google Scholar
Grove, T. L. et al. Structural insights into thioether bond formation in the biosynthesis of sactipeptides. J. Am. Chem. Soc. 139, 11734–11744 (2017).
Article CAS PubMed PubMed Central Google Scholar
MacMahon, T. J., Jackson, T. C. & Freiser, B. S. A gas-phase study of FeSn+ (n = 1–6). J. Am. Chem. Soc. 111, 421–427 (2002).
He, J. et al.
Comments (0)