Sestrin2 can alleviate endoplasmic reticulum stress to improve traumatic brain injury by activating AMPK/mTORC1 signaling pathway

Ambrosio S, Saccà CD, Amente S, Paladino S, Lania L, Majello B (2017) Lysine-specific demethylase LSD1 regulates autophagy in neuroblastoma through SESN2-dependent pathway. Oncogene 36(48):6701–6711. https://doi.org/10.1038/onc.2017.267

Article  PubMed  PubMed Central  CAS  Google Scholar 

Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134(3):451–460. https://doi.org/10.1016/j.cell.2008.06.028

Article  PubMed  PubMed Central  CAS  Google Scholar 

Byun JK, Choi YK, Kim JH, Jeong JY, Jeon HJ, Kim MK, Hwang I, Lee SY, Lee YM, Lee IK, Park KG (2017) A positive Feedback Loop between Sestrin2 and mTORC2 is required for the survival of glutamine-depleted Lung Cancer cells. Cell Rep 20(3):586–599. https://doi.org/10.1016/j.celrep.2017.06.066

Article  PubMed  CAS  Google Scholar 

Cangelosi AL, Puszynska AM, Roberts JM, Armani A, Nguyen TP, Spinelli JB, Kunchok T, Wang B, Chan SH, Lewis CA, Comb WC, Bell GW, Helman A, Sabatini DM (2022) Zonated leucine sensing by Sestrin-mTORC1 in the liver controls the response to dietary leucine. Science 377(6601):47–56. https://doi.org/10.1126/science.abi9547

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chantranupong L, Wolfson RL, Orozco JM, Saxton RA, Scaria SM, Bar-Peled L, Spooner E, Isasa M, Gygi SP, Sabatini DM (2014) The sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep 9(1):1–8. https://doi.org/10.1016/j.celrep.2014.09.014

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen YS, Chen SD, Wu CL, Huang SS, Yang DI (2014) Induction of sestrin2 as an endogenous protective mechanism against amyloid beta-peptide neurotoxicity in primary cortical culture. Exp Neurol 253:63–71. https://doi.org/10.1016/j.expneurol.2013.12.009

Article  PubMed  CAS  Google Scholar 

Chiang MC, Nicol CJB (2022) GSH-AuNP anti-oxidative stress, ER stress and mitochondrial dysfunction in amyloid-beta peptide-treated human neural stem cells. Free Radic Biol Med 187:185–201. https://doi.org/10.1016/j.freeradbiomed.2022.05.025

Article  PubMed  CAS  Google Scholar 

Davis CK, Vemuganti R (2022) Antioxidant therapies in traumatic brain injury. Neurochem Int 152:105255. https://doi.org/10.1016/j.neuint.2021.105255

Article  PubMed  CAS  Google Scholar 

Deng C, Yi R, Fei M, Li T, Han Y, Wang H (2021) Naringenin attenuates endoplasmic reticulum stress, reduces apoptosis, and improves functional recovery in experimental traumatic brain injury. Brain Res 1769:147591. https://doi.org/10.1016/j.brainres.2021.147591

Article  PubMed  CAS  Google Scholar 

Du Y, Ma X, Ma L, Li S, Zheng J, Lv J, Cui L, Lv J (2020) Inhibition of microRNA-148b-3p alleviates oxygen-glucose deprivation/reoxygenation-induced apoptosis and oxidative stress in HT22 hippocampal neuron via reinforcing Sestrin2/Nrf2 signalling. Clin Exp Pharmacol Physiol 47(4):561–570. https://doi.org/10.1111/1440-1681.13231

Article  PubMed  CAS  Google Scholar 

Fatima MT, Hasan M, Abdelsalam SS, Sivaraman SK, El-Gamal H, Zahid MA, Elrayess MA, Korashy HM, Zeidan A, Parray AS, Agouni A (2021) Sestrin2 suppression aggravates oxidative stress and apoptosis in endothelial cells subjected to pharmacologically induced endoplasmic reticulum stress. Eur J Pharmacol 907:174247. https://doi.org/10.1016/j.ejphar.2021.174247

Article  PubMed  CAS  Google Scholar 

Gao A, Li F, Zhou Q, Chen L (2020) Sestrin2 as a potential therapeutic target for Cardiovascular Diseases. Pharmacol Res 159:104990. https://doi.org/10.1016/j.phrs.2020.104990

Article  PubMed  CAS  Google Scholar 

Gao C, Chen X, Xu H, Guo H, Zheng L, Yan Y, Ren Z, Luo C, Gao Y, Wang Z, Tao L, Wang T (2022) Restraint stress delays the recovery of neurological impairments and exacerbates brain damages through activating endoplasmic reticulum stress-mediated Neurodegeneration/Autophagy/Apopotosis post Moderate Traumatic Brain Injury. Mol Neurobiol 59(3):1560–1576. https://doi.org/10.1007/s12035-022-02735-4

Article  PubMed  CAS  Google Scholar 

Han D, Kim H, Kim S, Le QA, Han SY, Bae J, Shin HW, Kang HG, Han KH, Shin J, Park HW (2022) Sestrin2 protects against cholestatic liver injury by inhibiting endoplasmic reticulum stress and NLRP3 inflammasome-mediated pyroptosis. Exp Mol Med 54(3):239–251. https://doi.org/10.1038/s12276-022-00737-9

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hay N (2008) p53 strikes mTORC1 by employing sestrins. Cell Metab 8(3):184–185. https://doi.org/10.1016/j.cmet.2008.08.010

Article  PubMed  PubMed Central  CAS  Google Scholar 

He T, Li W, Song Y, Li Z, Tang Y, Zhang Z, Yang GY (2020) Sestrin2 regulates microglia polarization through mTOR-mediated autophagic flux to attenuate inflammation during experimental brain ischemia. J Neuroinflammation 17(1):329. https://doi.org/10.1186/s12974-020-01987-y

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hetzer SM, Guilhaume-Correa F, Day D, Bedolla A, Evanson NK (2021) Traumatic Optic Neuropathy is Associated with Visual Impairment, Neurodegeneration, and endoplasmic reticulum stress in adolescent mice. Cells 10(5):996. https://doi.org/10.3390/cells10050996

Article  PubMed  PubMed Central  CAS  Google Scholar 

Holczer M, Hajdú B, Lőrincz T, Szarka A, Bánhegyi G, Kapuy O (2019) A double negative Feedback Loop between mTORC1 and AMPK Kinases Guarantees Precise Autophagy induction upon Cellular stress. Int J Mol Sci 20(22):5543. https://doi.org/10.3390/ijms20225543

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hou YS, Guan JJ, Xu HD, Wu F, Sheng R, Qin ZH (2015) Sestrin2 protects dopaminergic cells against Rotenone Toxicity through AMPK-Dependent Autophagy activation. Mol Cell Biol 35(16):2740–2751. https://doi.org/10.1128/MCB.00285-15

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hsieh YH, Chao AC, Lin YC, Chen SD, Yang DI (2021) The p53/NF-kappaB-dependent induction of sestrin2 by amyloid-beta peptides exerts antioxidative actions in neurons. Free Radic Biol Med 169:36–61. https://doi.org/10.1016/j.freeradbiomed.2021.04.004

Article  PubMed  CAS  Google Scholar 

Jang SK, Hong SE, Lee DH, Kim JY, Kim JY, Ye SK, Hong J, Park IC, Jin HO (2021) Inhibition of mTORC1 through ATF4-induced REDD1 and Sestrin2 expression by Metformin. BMC Cancer 21(1):803. https://doi.org/10.1186/s12885-021-08346-x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jia Y, Zheng Z, Yang Y, Zou M, Li J, Wang L, Guan M, Xue Y (2019) MiR-4756 promotes albumin-induced renal tubular epithelial cell epithelial-to-mesenchymal transition and endoplasmic reticulum stress via targeting Sestrin2. J Cell Physiol 234(3):2905–2915. https://doi.org/10.1002/jcp.27107

Article  PubMed  CAS  Google Scholar 

Jiang C, Bi C, Jiang X, Tian T, Huang X, Wang C, Fernandez MR, Iqbal J, Chan WC, McKeithan TW, Lewis RE, Fu K (2019) The miR-17 ~ 92 cluster activates mTORC1 in mantle cell Lymphoma by targeting multiple regulators in the STK11/AMPK/TSC/mTOR pathway. Br J Haematol 185(3):616–620. https://doi.org/10.1111/bjh.15591

Article  PubMed  Google Scholar 

Kou JJ, Shi JZ, He YY, Hao JJ, Zhang HY, Luo DM, Song JK, Yan Y, Xie XM, Du GH, Pang XB (2022) Luteolin alleviates cognitive impairment in Alzheimer’s Disease mouse model via inhibiting endoplasmic reticulum stress-dependent neuroinflammation. Acta Pharmacol Sin 43(4):840–849. https://doi.org/10.1038/s41401-021-00702-8

Article  PubMed  CAS  Google Scholar 

Krishan S, Sahni S, Richardson DR (2020) The anti-tumor agent, Dp44mT, promotes nuclear translocation of TFEB via inhibition of the AMPK-mTORC1 axis. Biochim Biophys Acta Mol Basis Dis 1866(12):165970. https://doi.org/10.1016/j.bbadis.2020.165970

Article  PubMed  CAS  Google Scholar 

Lee HY, Lee GH, Yoon Y, Chae HJ (2019) Rhus verniciflua and Eucommia ulmoides protects against high-Fat Diet-Induced hepatic steatosis by enhancing Anti-oxidation and AMPK activation. Am J Chin Med 47(6):1253–1270. https://doi.org/10.1142/S0192415X19500642

Article  PubMed  CAS  Google Scholar 

Lee S, Shin J, Hong Y, Shin SM, Shin HW, Shin J, Lee SK, Park HW (2020) Sestrin2 alleviates palmitate-induced endoplasmic reticulum stress, apoptosis, and defective invasion of human trophoblast cells. Am J Reprod Immunol 83(4):e13222. https://doi.org/10.1111/aji.13222

Article  PubMed  CAS  Google Scholar 

Li H, Min Q, Ouyang C, Lee J, He C, Zou MH, Xie Z (2014) AMPK activation prevents excess nutrient-induced hepatic lipid accumulation by inhibiting mTORC1 signaling and endoplasmic reticulum stress response. Biochim Biophys Acta 1842(9):1844–1854. https://doi.org/10.1016/j.bbadis.2014.07.002

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li Y, Wu J, Yu S, Zhu J, Zhou Y, Wang P, Li L, Zhao Y (2020) Sestrin2 promotes angiogenesis to alleviate brain injury by activating Nrf2 through regulating the interaction between p62 and Keap1 following photothrombotic Stroke in rats. Brain Res 1745:146948. https://doi.org/10.1016/j.brainres.2020.146948

Article  PubMed  CAS  Google Scholar 

Li HQ, Xia SN, Xu SY, Liu PY, Gu Y, Bao XY, Xu Y, Cao X (2021a) γ-Glutamylcysteine alleviates ischemic Stroke-Induced neuronal apoptosis by inhibiting ROS-Mediated endoplasmic reticulum stress. Oxid Med Cell Longev 2021:2961079. https://doi.org/10.1155/2021/2961079

Article 

Comments (0)

No login
gif