Papageorgiou M, Lambropoulou D, Morrison C, Kłodzińska E, Namieśnik J, Płotka-Wasylka J. Literature update of analytical methods for biogenic amines determination in food and beverages. TrAC Trends Anal Chem. 2018;98:128–42. https://doi.org/10.1016/j.trac.2017.11.001.
de la Torre CAL, Conte-Junior CA. Detection of biogenic amines: quality and toxicity indicators in food of animal origin. In: Holban AM, Grumezescu AM (eds) Food control and biosecurity. Academic Press; 2018. pp. 225–257. https://doi.org/10.1016/B978-0-12-811445-2.00006-4.
Ubeda C, Hornedo-Ortega R, Cerezo AB, Garcia-Parrilla MC, Troncoso AM. Chemical hazards in grapes and wine, climate change and challenges to face. Food Chem. 2020;314: 126222. https://doi.org/10.1016/j.foodchem.2020.126222.
Article CAS PubMed Google Scholar
Gao X, Li C, He R, Zhang Y, Wang B, Zhang Z-H, Ho C-T. Research advances on biogenic amines in traditional fermented foods: emphasis on formation mechanism, detection and control methods. Food Chem. 2023;405: 134911. https://doi.org/10.1016/j.foodchem.2022.134911.
Vasconcelos H, de Almeida JMMM, Matias A, Saraiva C, Jorge PAS, Coelho LCC. Detection of biogenic amines in several foods with different sample treatments: an overview. Trends Food Sci Technol. 2021;113:86–96. https://doi.org/10.1016/j.tifs.2021.04.043.
Ahmad W, Mohammed GI, Al-Eryani DA, Saigl ZM, Alyoubi AO, Alwael H, Bashammakh AS, O’Sullivan CK, El-Shahawi MS. Biogenic amines formation mechanism and determination strategies: future challenges and limitations. Crit Rev Anal Chem. 2020;50(6):485–500. https://doi.org/10.1080/10408347.2019.1657793.
Article CAS PubMed Google Scholar
Kokosa JM. A guide to recent trends in green applications of liquid phase microextraction for bioanalytical sample preparations. Sustain Chem Pharm. 2021;22: 100478. https://doi.org/10.1016/j.scp.2021.100478.
Płotka-Wasylka J, Jatkowska N, Paszkiewicz M, Caban M, Fares MY, Dogan A, Garrigues S, Manousi N, Kalogiouri N, Nowak PM, Samanidou VF, de la Guardia M. Miniaturized solid phase extraction techniques for different kind of pollutants analysis: state of the art and future perspectives – PART 1. TrAC Trends Anal Chem. 2023;162: 117034. https://doi.org/10.1016/j.trac.2023.117034.
Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerdà V. Solid-phase extraction of organic compounds: a critical review. Part ii TrAC Trends Anal Chem. 2016;80:655–67. https://doi.org/10.1016/j.trac.2015.08.014.
Sajid M. Dispersive liquid-liquid microextraction: evolution in design, application areas, and green aspects. TrAC Trends Anal Chem. 2022;152: 116636. https://doi.org/10.1016/j.trac.2022.116636.
Malik MI, Shaikh H, Mustafa G, Bhanger MI. Recent applications of molecularly imprinted polymers in analytical chemistry. Sep Purif Rev. 2019;48(3):179–219. https://doi.org/10.1080/15422119.2018.1457541.
Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, Wang X, Li B, Chen L. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC Trends Anal Chem. 2020;128: 115923. https://doi.org/10.1016/j.trac.2020.115923.
BelBruno JJ. Molecularly imprinted polymers. Chem Rev. 2019;119(1):94–119. https://doi.org/10.1021/acs.chemrev.8b00171.
Article CAS PubMed Google Scholar
Lidström P, Tierney J, Wathey B, Westman J. Microwave assisted organic synthesis—a review. Tetrahedron. 2001;57(45):9225–83. https://doi.org/10.1016/S0040-4020(01)00906-1.
Anwar J, Shafique U, Waheed uz Z, Rehman R, Salman M, Dar A, Anzano JM, Ashraf U, Ashraf S. Microwave chemistry: effect of ions on dielectric heating in microwave ovens. Arab J Chem. 2015;8(1):100–104. https://doi.org/10.1016/j.arabjc.2011.01.014.
Zhang X, Hayward DO. Applications of microwave dielectric heating in environment-related heterogeneous gas-phase catalytic systems. Inorganica Chim Acta. 2006;359(11):3421–33. https://doi.org/10.1016/j.ica.2006.01.037.
Bogdal D. Microwave-assisted polymerization. Polym Sci Compr Ref. 2012;981–1027. https://doi.org/10.1016/B978-0-444-53349-4.00121-7.
Tırıs G, Sare Yanıkoğlu R, Ceylan B, Egeli D, Kepekci Tekkeli E, Önal A. A review of the currently developed analytical methods for the determination of biogenic amines in food products. Food Chem. 2023;398: 133919. https://doi.org/10.1016/j.foodchem.2022.133919.
Article CAS PubMed Google Scholar
Jain A, Verma KK. Strategies in liquid chromatographic methods for the analysis of biogenic amines without and with derivatization. TrAC Trends Anal Chem. 2018;109:62–82. https://doi.org/10.1016/j.trac.2018.10.001.
López-Lorente ÁI, Pena-Pereira F, Pedersen-Bjergaard S, Zuin VG, Ozkan SA, Psillakis E. The ten principles of green sample preparation. TrAC Trends Anal Chem. 2022;148: 116530. https://doi.org/10.1016/j.trac.2022.116530.
Cerutti S, Pacheco PH, Gil R, Martinez LD. Green sample preparation strategies for organic/inorganic compounds in environmental samples. Curr Opin Green Sustain Chem. 2019;19:76–86. https://doi.org/10.1016/j.cogsc.2019.08.007.
Sajid M, Płotka-Wasylka J. “Green” nature of the process of derivatization in analytical sample preparation. TrAC Trends Anal Chem. 2018;102:16–31. https://doi.org/10.1016/j.trac.2018.01.005.
Tsai C-J, Liao F-Y, Weng J-R, Feng C-H. Tandem derivatization combined with salting-out assisted liquid–liquid microextraction for determination of biothiols in urine by gas chromatography–mass spectrometry. J Chromatogr A. 2017;1524:29–36. https://doi.org/10.1016/j.chroma.2017.09.069.
Article CAS PubMed Google Scholar
Płotka J, Tobiszewski M, Sulej AM, Kupska M, Górecki T, Namieśnik J. Green chromatography. J Chromatogr A. 2013;1307:1–20. https://doi.org/10.1016/j.chroma.2013.07.099.
Article CAS PubMed Google Scholar
Welch CJ, Wu N, Biba M, Hartman R, Brkovic T, Gong X, Helmy R, Schafer W, Cuff J, Pirzada Z, Zhou L. Greening analytical chromatography. TrAC Trends Anal Chem. 2010;29(7):667–80. https://doi.org/10.1016/j.trac.2010.03.008.
Sadkowska J, Caban M, Chmielewski M, Stepnowski P, Kumirska J. Environmental aspects of using gas chromatography for determination of pharmaceutical residues in samples characterized by different composition of the matrix. Arch Environ Prot. 2017;43(3):3–9. https://doi.org/10.1515/aep-2017-0028.
Kappe CO. Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed. 2004;43(46):6250–84. https://doi.org/10.1002/anie.200400655.
Santana APR, Mora-Vargas JA, Guimarães TGS, Amaral CDB, Oliveira A, Gonzalez MH. Sustainable synthesis of natural deep eutectic solvents (NADES) by different methods. J Mol Liq. 2019;293: 111452. https://doi.org/10.1016/j.molliq.2019.111452.
Pakade V, Lindahl S, Chimuka L, Turner C. Molecularly imprinted polymers targeting quercetin in high-temperature aqueous solutions. J Chromatogr A. 2012;1230:15–23. https://doi.org/10.1016/j.chroma.2012.01.051.
Article CAS PubMed Google Scholar
Sun H-w, Qiao F-x. Recognition mechanism of water-compatible molecularly imprinted solid-phase extraction and determination of nine quinolones in urine by high performance liquid chromatography. J Chromatogr A. 2008;1212(1):1–9. https://doi.org/10.1016/j.chroma.2008.09.107.
Article CAS PubMed Google Scholar
Zhang H. Water-compatible molecularly imprinted polymers: promising synthetic substitutes for biological receptors. Polym. 2014;55(3):699–714. https://doi.org/10.1016/j.polymer.2013.12.064.
Cui Y, He Z, Xu Y, Su Y, Ding L, Li Y. Fabrication of molecularly imprinted polymers with tunable adsorption capability based on solvent-responsive cross-linker. Chem Eng J. 2021;405: 126608. https://doi.org/10.1016/j.cej.2020.126608.
Joshi VP, Karmalkar RN, Kulkarni MG, Mashelkar RA. Effect of solvents on selectivity in separation using molecularly imprinted adsorbents: separation of phenol and bisphenol A. Ind Eng Chem Res. 1999;38(11):4417–4423. https://pubs.acs.org/doi/10.1021/ie990331o.
Yu J, Di S, Yu H, Ning T, Yang H, Zhu S. Insights into the structure-performance relationships of extraction materials in sample preparation for chromatography. J Chromatogr A. 2021;1637: 461822. https://doi.org/10.1016/j.chroma.2020.461822.
Article CAS PubMed Google Scholar
Sahebnasagh A, Karimi G, Mohajeri SA. Preparation and evaluation of histamine imprinted polymer as a selective sorbent in molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography analysis in canned fish. Food Anal Methods. 2014;7(1):1–8. https://link.springer.com/article/10.1007/s12161-013-9579-7.
Gao J, Yan L, Yan Y, Chen L, Lu J, Xing W, Yu C, Chen M, Meng M, Yan Y, Wu Y. Solvent-driven controllable molecularly imprinted membrane with switched selectivity and fast regenerability enabled by customized bifunctional monomers. Chem Eng J. 2022;446: 136991. https://doi.org/10.1016/j.cej.2022.136991.
Fiamegos YC, Stalikas CD. Gas chromatographic determination of amino acids via one-step phase-transfer catalytic pentafluorobenzylation–preconcentration. J Chromatogr A. 2006;1110(1):66–72. https://doi.org/10.1016/j.chroma.2006.01.074.
Article CAS PubMed Google Scholar
Scheyer A, Morville S, Mirabel P, Millet M. A multiresidue method using ion-trap gas chromatography–tandem mass spectrometry with or without derivatisation with pentafluorobenzylbromide for the analysis of pesticides in the atmosphere. Anal Bioanal Chem. 2005;381(6):1226–1233. https://link.springer.com/article/10.1007/s00216-005-3060-4.
Abdelraheem EMH, Hassan SM, Arief MMH, Mohammad SG. Validation of quantitative method for azoxystrobin residues in green beans and peas. Food Chem. 2015;182:246–50. https://doi.org/10.1016/j.foodchem.2015.02.106.
Article CAS PubMed Google Scholar
Hasegawa K, Minakata K, Suzuki M, Suzuki O. The standard addition method and its validation in forensic toxicology. Forensic Toxicol. 2021;39 (2):311–333.
Comments (0)