Association Study Between Kynurenine 3-Monooxygenase (KMO) Gene and Parkinson’s Disease Patients

Török N, Török R, Szolnoki Z et al (2015) The genetic link between Parkinson’s disease and the kynurenine pathway is still missing. Parkinson’s Dis 2015:e474135. https://doi.org/10.1155/2015/474135

Article  Google Scholar 

Zirra A, Rao SC, Bestwick J et al (2023) Gender differences in the prevalence of Parkinson’s disease. Mov Disord Clin Pract 10:86–93. https://doi.org/10.1002/mdc3.13584

Article  PubMed  Google Scholar 

Venkatesan D, Iyer M, S RW et al (2022) Genotypic-phenotypic analysis, metabolic profiling and clinical correlations in Parkinson’s disease patients from Tamil Nadu population, India. J Mol Neurosci 72:1724–1737. https://doi.org/10.1007/s12031-022-02028-4

Article  CAS  PubMed  Google Scholar 

Yoon SY, Park YH, Lee HJ et al (2022) Lifestyle factors and Parkinson disease risk: Korean nationwide cohort study with repeated health screening data. Neurology 98:e641–e652. https://doi.org/10.1212/WNL.0000000000012942

Article  CAS  PubMed  Google Scholar 

Liu C, Liu Z, Zhang Z et al (2020) A scientometric analysis and visualization of research on Parkinson’s disease associated with pesticide exposure. Front Public Health 8:91

Article  PubMed  PubMed Central  Google Scholar 

Yan D, Zhang Y, Liu L et al (2018) Pesticide exposure and risk of Parkinson’s disease: dose-response meta-analysis of observational studies. Regul Toxicol Pharmacol 96:57–63. https://doi.org/10.1016/j.yrtph.2018.05.005

Article  CAS  PubMed  Google Scholar 

Seegal RF, Marek KL, Seibyl JP et al (2010) Occupational exposure to PCBs reduces striatal dopamine transporter densities only in women: a β-CIT imaging study. Neurobiol Dis 38:219–225. https://doi.org/10.1016/j.nbd.2010.01.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vellingiri B (2023) A deeper understanding about the role of uranium toxicity in neurodegeneration. Environ Res 233:116430

Article  CAS  PubMed  Google Scholar 

Iyer M, Anand U, Thiruvenkataswamy S et al (2023) A review of chromium (Cr) epigenetic toxicity and health hazards. Sci Total Environ 882:163483

Article  CAS  PubMed  Google Scholar 

Vellingiri B, Chandrasekhar M, Sabari SS et al (2022) Neurotoxicity of pesticides–a link to neurodegeneration. Ecotoxicol Environ Saf 243:113972

Article  CAS  PubMed  Google Scholar 

Venkatesan D, Iyer M, Krishnan P et al (2021) A late-onset Parkinson’s disease in tribes in India–a case report. Brain Disorders 3:100015

Article  CAS  Google Scholar 

Goldman SM (2010) Trichloroethylene and Parkinson’s disease: dissolving the puzzle. Expert Rev Neurother 10:835–837

Article  CAS  PubMed  Google Scholar 

Caudle WM, Guillot TS, Lazo CR, Miller GW (2012) Industrial toxicants and Parkinson’s disease. Neurotoxicology 33:178–188. https://doi.org/10.1016/j.neuro.2012.01.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Widner B, Leblhuber F, Fuchs D (2002) Increased neopterin production and tryptophan degradation in advanced Parkinson’s disease. J Neural Transm 109:181–189. https://doi.org/10.1007/s007020200014

Article  CAS  PubMed  Google Scholar 

Maddison DC, Giorgini F (2015) The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol 40:134–141. https://doi.org/10.1016/j.semcdb.2015.03.002

Article  CAS  PubMed  Google Scholar 

Zádori D, Klivényi P, Vámos E et al (2009) Kynurenines in chronic neurodegenerative disorders: future therapeutic strategies. J Neural Transm 116:1403–1409. https://doi.org/10.1007/s00702-009-0263-4

Article  CAS  PubMed  Google Scholar 

Okamoto H, Yamamoto S, Nozaki M, Hayaishi O (1967) On the submitochondrial localization of L-kynurenine-3-hydroxylase. Biochem Biophys Res Commun 26:309–314. https://doi.org/10.1016/0006-291X(67)90123-4

Article  CAS  PubMed  Google Scholar 

Schwarcz R (1993) Metabolism and function of brain kynurenines. Biochem Soc Trans 21:77–82

Article  CAS  PubMed  Google Scholar 

Lim CK, Fernández-Gomez FJ, Braidy N et al (2017) Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease. Prog Neurobiol 155:76–95. https://doi.org/10.1016/j.pneurobio.2015.12.009

Article  CAS  PubMed  Google Scholar 

Ogawa T, Matson WR, Beal MF et al (1992) Kynurenine pathway abnormalities in Parkinson’s disease. Neurology 42:1702–1702

Article  CAS  PubMed  Google Scholar 

Martí-Massó JF, Bergareche A, Makarov V et al (2013) The ACMSD gene, involved in tryptophan metabolism, is mutated in a family with cortical myoclonus, epilepsy, and parkinsonism. J Mol Med 91:1399–1406

Article  PubMed  Google Scholar 

Holtze M, Saetre P, Engberg G et al (2012) Kynurenine 3-monooxygenase polymorphisms: relevance for kynurenic acid synthesis in patients with schizophrenia and healthy controls. J Psychiatry Neurosci 37:53–57. https://doi.org/10.1503/jpn.100175

Article  PubMed  PubMed Central  Google Scholar 

Lavebratt C, Olsson S, Backlund L et al (2014) The KMO allele encoding Arg452 is associated with psychotic features in bipolar disorder type 1, and with increased CSF KYNA level and reduced KMO expression. Mol Psychiatry 19:334–341. https://doi.org/10.1038/mp.2013.11

Article  CAS  PubMed  Google Scholar 

Jung M, Klotzek S, Lewandowski M et al (2003) Changes in concentration of DNA in serum and plasma during storage of blood samples. Clin Chem 49:1028–1029

Article  CAS  PubMed  Google Scholar 

Fossati P, Prencipe L, Berti G (1980) Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem 26:227–231. https://doi.org/10.1093/clinchem/26.2.227

Article  CAS  PubMed  Google Scholar 

Jesús S, Pérez I, Cáceres-Redondo MT et al (2013) Low serum uric acid concentration in Parkinson’s disease in southern Spain. Eur J Neurol 20:208–210. https://doi.org/10.1111/j.1468-1331.2012.03745.x

Article  PubMed  Google Scholar 

Suguna S, Nandal DH, Kamble S et al (2014) Genomic DNA isolation from human whole blood samples by non enzymatic salting out method. Int J Pharm Pharm Sci 6:198–199

Google Scholar 

Wang M, Marín A (2006) Characterization and prediction of alternative splice sites. Gene 366:219–227

Article  CAS  PubMed  Google Scholar 

Zuallaert J, Godin F, Kim M et al (2018) SpliceRover: interpretable convolutional neural networks for improved splice site prediction. Bioinformatics 34:4180–4188

Article  CAS  PubMed  Google Scholar 

Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim HT, Na BK, Chung J et al (2018) Structural basis for inhibitor-induced hydrogen peroxide production by kynurenine 3-monooxygenase. Cell Chem Biol 25:426-438.e4. https://doi.org/10.1016/j.chembiol.2018.01.008

Article  CAS  PubMed  Google Scholar 

PyMOL (2017) The PyMOL molecular graphics system, Version 2.0. Schrödinger LLC

Prime (2020) Schrödinger release 2020–4. Schrödinger, LLC, New York, NY

Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/J.SOFTX.2015.06.001

Article  Google Scholar 

Huang J, Rauscher S, Nawrocki G, et al (2016) charmm36m: an improved force field for folded and intrinsically disordered proteins. 14:. https://doi.org/10.1038/nMeth.4067

Zoete V, Cuendet MA, Grosdidier A, Michielin O (2011) SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem 32:2359–2368. https://doi.org/10.1002/JCC.21816

Article  CAS  PubMed  Google Scholar 

Sureshan M, Prabhu D, Kadhirvel S (2022) Computational identification and experimental validation of anti-filarial lead molecules targeting metal binding/substrate channel residues of Cu/Zn SOD1 from Wuchereria bancrofti. J Biomol Struct Dyn:1–14. https://doi.org/10.1080/07391102.2022.2136245

Sureshan M, Prabhu D, Rajamanikandan S, Saraboji K (2023) Discovery of potent inhibitors targeting Glutathione S-transferase of Wuchereria bancrofti: a step toward the development of effective anti-filariasis drugs. Mol Diversity 1:1–21. https://doi.org/10.1007/S11030-023-10617-7/FIGURES/11

Article  Google Scholar 

Prabhu D, Rajamanikandan S, Sureshan M et al (2021) Modelling studies reveal the importance of the C-terminal inter motif loop of NSP1 as a promising target site for drug discovery and screening of potential phytochemicals to combat SARS-CoV-2. J Mol Graph Model 106:107920. https://doi.org/10.1016/J.JMGM.2021.107920

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif