Phan T, Zhang XH, Rosen S, Melstrom LG (2023) P38 kinase in gastrointestinal cancers. Cancer Gene Ther 30(9):1181–1189
Trempolec N, Dave-Coll N, Nebreda AR (2013) SnapShot: p38 MAPK signaling. Cell 152(3):656–656. e651
Article CAS PubMed Google Scholar
Consortium G, Ardlie KG, Deluca DS, Segrè AV, Sullivan TJ, Young TR, Gelfand ET, Trowbridge CA et al (2015) The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348(6235):648–660
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C et al (2015) Tissue-based map of the human proteome. Science 347(6220):1260419
Obata T, Brown GE, Yaffe MB (2000) MAP kinase pathways activated by stress: the p38 MAPK pathway. Crit Care Med 28(4):N67–N77
Article CAS PubMed Google Scholar
Ashwell JD (2006) The many paths to p38 mitogen-activated protein kinase activation in the immune system. Nat Rev Immunol 6(7):532–540
Article CAS PubMed Google Scholar
Xu T, Pan L-X, Ge Y-X, Li P, Meng X-M, Huang C, Li J (2018) TMEM88 mediates inflammatory cytokines secretion by regulating JNK/P38 and canonical Wnt/β-catenin signaling pathway in LX-2 cells. Inflammopharmacology 26(5):1339–1348
Article CAS PubMed Google Scholar
Slomiany B, Slomiany A (2000) Blockade of p38 mitogen-activated protein kinase pathway inhibits inducible nitric oxide synthase and gastric mucosal inflammatory reaction to Helicobacter pylori lipopolysaccharide. Inflammopharmacology 8(4):371–382
Kim S-M, Park E-J, Lee H-J (2022) Nuciferine attenuates lipopolysaccharide-stimulated inflammatory responses by inhibiting p38 MAPK/ATF2 signaling pathways. Inflammopharmacol 30:2373–2383
Wang L, Xia Z, Tang W, Sun Y, Wu Y, Kwok HF, Sun F, Cao Z (2022) p38 activation and viral infection. Expert Rev Mol Med 24:e4
Article CAS PubMed Google Scholar
Grimes JM, Grimes KV (2020) p38 MAPK inhibition: a promising therapeutic approach for COVID-19. J Mol Cell Cardiol 144:63–65
Article CAS PubMed PubMed Central Google Scholar
Valipour M (2023) Therapeutic prospects of naturally occurring p38 MAPK inhibitors tanshinone IIA and pinocembrin for the treatment of SARS-CoV-2-induced CNS complications. Phytother Res 37(9):3724–3743
Valipour M, Irannejad H, Emami S (2022) Application of emetine in SARS-CoV-2 treatment: regulation of p38 MAPK signaling pathway for preventing emetine-induced cardiac complications. Cell Cycle 21(22):2379–2386
Article CAS PubMed PubMed Central Google Scholar
Anand P, Shenoy R, Palmer JE, Baines AJ, Lai RY, Robertson J, Bird N, Ostenfeld T et al (2011) Clinical trial of the p38 MAP kinase inhibitor dilmapimod in neuropathic pain following nerve injury. Eur J Pain 15(10):1040–1048
Article CAS PubMed Google Scholar
Yu C, Li P, Wang Y-X, Zhang K-G, Zheng Z-C, Liang L-S (2020) Sanguinarine attenuates neuropathic pain by inhibiting P38 MAPK activated neuroinflammation in rat model. Drug Des Devel Ther 14:4725–4733
Ostenfeld T, Krishen A, Lai RY, Bullman J, Green J, Anand P, Scholz J, Kelly M (2015) A randomized, placebo-controlled trial of the analgesic efficacy and safety of the p38 MAP kinase inhibitor, losmapimod, in patients with neuropathic pain from lumbosacral radiculopathy. Clin J Pain 31(4):283–293
Stavniichuk R, Drel VR, Shevalye H, Maksimchyk Y, Kuchmerovska TM, Nadler JL, Obrosova IG (2011) Baicalein alleviates diabetic peripheral neuropathy through inhibition of oxidative–nitrosative stress and p38 MAPK activation. Exp Neurol 230(1):106–113
Article CAS PubMed PubMed Central Google Scholar
Canovas B, Nebreda AR (2021) Diversity and versatility of p38 kinase signalling in health and disease. Nat Rev Mol Cell Biol 22(5):346–366
Article CAS PubMed PubMed Central Google Scholar
Asih PR, Prikas E, Stefanoska K, Tan AR, Ahel HI, Ittner A (2020) Functions of p38 MAP kinases in the central nervous system. Front Mol Neurosci 13:570586
Article CAS PubMed PubMed Central Google Scholar
Kumar S, Boehm J, Lee JC (2003) p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2(9):717–726
Article CAS PubMed Google Scholar
Saklatvala J (2004) The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr Opin Pharmacol 4(4):372–377
Article CAS PubMed Google Scholar
Falcicchia C, Tozzi F, Arancio O, Watterson DM, Origlia N (2020) Involvement of p38 MAPK in synaptic function and dysfunction. Int J Mol Sci 21(16):5624
Article CAS PubMed PubMed Central Google Scholar
Borders AS, De Almeida L, Van Eldik LJ, Watterson DM (2008) The p38α mitogen-activated protein kinase as a central nervous system drug discovery target. BMC Neurosci 9(2):1–8
Xing B, Bachstetter AD, Van Eldik LJ (2015) Inhibition of neuronal p38α, but not p38β MAPK, provides neuroprotection against three different neurotoxic insults. J Mol Neurosci 55:509–518
Article CAS PubMed Google Scholar
Wu R, Chen H, Ma J, He Q, Huang Q, Liu Q, Li M, Yuan Z (2016) c-Abl–p38α signaling plays an important role in MPTP-induced neuronal death. Cell Death Differ 23(3):542–552
Article CAS PubMed Google Scholar
Guo G, Bhat NR (2007) p38α MAP kinase mediates hypoxia-induced motor neuron cell death: a potential target of minocycline’s neuroprotective action. Neurochem Res 32:2160–2166
Article CAS PubMed Google Scholar
Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2018) Blood-brain barrier: from physiology to disease and back. Physiol Rev 99(1):21–78
Jeon M-T, Kim K-S, Kim ES, Lee S, Kim J, Hoe H-S, Kim D-G (2021) Emerging pathogenic role of peripheral blood factors following BBB disruption in neurodegenerative disease. Ageing Res Rev 68:101333
Article CAS PubMed Google Scholar
Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14(3):133–150
Article CAS PubMed PubMed Central Google Scholar
Li Y, Xie L, Huang T, Zhang Y, Zhou J, Qi B, Wang X, Chen Z et al (2019) Aging neurovascular unit and potential role of DNA damage and repair in combating vascular and neurodegenerative disorders. Front Neurosci 13:778
Article PubMed PubMed Central Google Scholar
Kuperberg SJ, Wadgaonkar R (2017) Sepsis-associated encephalopathy: the blood–brain barrier and the sphingolipid rheostat. Front Immunol 8:597
Article PubMed PubMed Central Google Scholar
Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, Matsumoto M, Kato D et al (2019) Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun 10(1):5816
Article CAS PubMed PubMed Central Google Scholar
Versele R, Sevin E, Gosselet F, Fenart L, Candela P (2022) TNF-α and IL-1β modulate blood-brain barrier permeability and decrease amyloid-β peptide efflux in a human blood-brain barrier model. Int J Mol Sci 23(18):10235
Article CAS PubMed PubMed Central Google Scholar
Hua LL, Zhao M-L, Cosenza M, Kim M-O, Huang H, Tanowitz HB, Brosnan CF, Lee SC (2002) Role of mitogen-activated protein kinases in inducible nitric oxide synthase and TNFα expression in human fetal astrocytes. J Neuroimmunol 126(1-2):180–189
Article CAS PubMed Google Scholar
Tong X-K, Hamel E (2007) Transforming growth factor-β1 impairs endothelin-1-mediated contraction of brain vessels by inducing mitogen-activated protein (MAP) kinase phosphatase-1 and inhibiting p38 MAP kinase. Mol Pharmacol 72(6):1476–1483
Article CAS PubMed Google Scholar
Nito C, Kamada H, Endo H, Niizuma K, Myer DJ, Chan PH (2008) Role of the p38 mitogen-activated protein kinase/cytosolic phospholipase A2 signaling pathway in blood—brain barrier disruption after focal cerebral ischemia and reperfusion. J Cereb Blood Flow Metab 28(10):1686–1696
Article CAS PubMed Google Scholar
Anwar A, Rajendran K, Siddiqui R, Raza Shah M, Khan NA (2018) Clinically approved drugs against CNS diseases as potential therapeutic agents to target brain-eating amoebae. ACS Chem Neurosci 10(1):658–666
Wager TT, Hou X, Verhoest PR, Villalobos A (2016) Central nervous system multiparameter optimization desirability: application in drug discovery. ACS Chem Neurosci 7(6):767–775
Article CAS PubMed Google Scholar
Danta CC (2020) CNS penetration ability: a critical factor for drugs in the treatment of SARS-CoV-2 brain infection. ACS Chem Neurosci 11(15):2137–2144
Article CAS PubMed Google Scholar
Ghose AK, Herbertz T, Hudkins RL, Dorsey BD, Mallamo JP (2012) Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem Neurosci 3(1):50–68
Comments (0)