CNS-Active p38α MAPK Inhibitors for the Management of Neuroinflammatory Diseases: Medicinal Chemical Properties and Therapeutic Capabilities

Phan T, Zhang XH, Rosen S, Melstrom LG (2023) P38 kinase in gastrointestinal cancers. Cancer Gene Ther 30(9):1181–1189

Trempolec N, Dave-Coll N, Nebreda AR (2013) SnapShot: p38 MAPK signaling. Cell 152(3):656–656. e651

Article  CAS  PubMed  Google Scholar 

Consortium G, Ardlie KG, Deluca DS, Segrè AV, Sullivan TJ, Young TR, Gelfand ET, Trowbridge CA et al (2015) The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348(6235):648–660

Article  Google Scholar 

Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C et al (2015) Tissue-based map of the human proteome. Science 347(6220):1260419

Article  PubMed  Google Scholar 

Obata T, Brown GE, Yaffe MB (2000) MAP kinase pathways activated by stress: the p38 MAPK pathway. Crit Care Med 28(4):N67–N77

Article  CAS  PubMed  Google Scholar 

Ashwell JD (2006) The many paths to p38 mitogen-activated protein kinase activation in the immune system. Nat Rev Immunol 6(7):532–540

Article  CAS  PubMed  Google Scholar 

Xu T, Pan L-X, Ge Y-X, Li P, Meng X-M, Huang C, Li J (2018) TMEM88 mediates inflammatory cytokines secretion by regulating JNK/P38 and canonical Wnt/β-catenin signaling pathway in LX-2 cells. Inflammopharmacology 26(5):1339–1348

Article  CAS  PubMed  Google Scholar 

Slomiany B, Slomiany A (2000) Blockade of p38 mitogen-activated protein kinase pathway inhibits inducible nitric oxide synthase and gastric mucosal inflammatory reaction to Helicobacter pylori lipopolysaccharide. Inflammopharmacology 8(4):371–382

Article  CAS  Google Scholar 

Kim S-M, Park E-J, Lee H-J (2022) Nuciferine attenuates lipopolysaccharide-stimulated inflammatory responses by inhibiting p38 MAPK/ATF2 signaling pathways. Inflammopharmacol 30:2373–2383

Wang L, Xia Z, Tang W, Sun Y, Wu Y, Kwok HF, Sun F, Cao Z (2022) p38 activation and viral infection. Expert Rev Mol Med 24:e4

Article  CAS  PubMed  Google Scholar 

Grimes JM, Grimes KV (2020) p38 MAPK inhibition: a promising therapeutic approach for COVID-19. J Mol Cell Cardiol 144:63–65

Article  CAS  PubMed  PubMed Central  Google Scholar 

Valipour M (2023) Therapeutic prospects of naturally occurring p38 MAPK inhibitors tanshinone IIA and pinocembrin for the treatment of SARS-CoV-2-induced CNS complications. Phytother Res 37(9):3724–3743

Valipour M, Irannejad H, Emami S (2022) Application of emetine in SARS-CoV-2 treatment: regulation of p38 MAPK signaling pathway for preventing emetine-induced cardiac complications. Cell Cycle 21(22):2379–2386

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anand P, Shenoy R, Palmer JE, Baines AJ, Lai RY, Robertson J, Bird N, Ostenfeld T et al (2011) Clinical trial of the p38 MAP kinase inhibitor dilmapimod in neuropathic pain following nerve injury. Eur J Pain 15(10):1040–1048

Article  CAS  PubMed  Google Scholar 

Yu C, Li P, Wang Y-X, Zhang K-G, Zheng Z-C, Liang L-S (2020) Sanguinarine attenuates neuropathic pain by inhibiting P38 MAPK activated neuroinflammation in rat model. Drug Des Devel Ther 14:4725–4733

Ostenfeld T, Krishen A, Lai RY, Bullman J, Green J, Anand P, Scholz J, Kelly M (2015) A randomized, placebo-controlled trial of the analgesic efficacy and safety of the p38 MAP kinase inhibitor, losmapimod, in patients with neuropathic pain from lumbosacral radiculopathy. Clin J Pain 31(4):283–293

Article  PubMed  Google Scholar 

Stavniichuk R, Drel VR, Shevalye H, Maksimchyk Y, Kuchmerovska TM, Nadler JL, Obrosova IG (2011) Baicalein alleviates diabetic peripheral neuropathy through inhibition of oxidative–nitrosative stress and p38 MAPK activation. Exp Neurol 230(1):106–113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Canovas B, Nebreda AR (2021) Diversity and versatility of p38 kinase signalling in health and disease. Nat Rev Mol Cell Biol 22(5):346–366

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asih PR, Prikas E, Stefanoska K, Tan AR, Ahel HI, Ittner A (2020) Functions of p38 MAP kinases in the central nervous system. Front Mol Neurosci 13:570586

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar S, Boehm J, Lee JC (2003) p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2(9):717–726

Article  CAS  PubMed  Google Scholar 

Saklatvala J (2004) The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr Opin Pharmacol 4(4):372–377

Article  CAS  PubMed  Google Scholar 

Falcicchia C, Tozzi F, Arancio O, Watterson DM, Origlia N (2020) Involvement of p38 MAPK in synaptic function and dysfunction. Int J Mol Sci 21(16):5624

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borders AS, De Almeida L, Van Eldik LJ, Watterson DM (2008) The p38α mitogen-activated protein kinase as a central nervous system drug discovery target. BMC Neurosci 9(2):1–8

Google Scholar 

Xing B, Bachstetter AD, Van Eldik LJ (2015) Inhibition of neuronal p38α, but not p38β MAPK, provides neuroprotection against three different neurotoxic insults. J Mol Neurosci 55:509–518

Article  CAS  PubMed  Google Scholar 

Wu R, Chen H, Ma J, He Q, Huang Q, Liu Q, Li M, Yuan Z (2016) c-Abl–p38α signaling plays an important role in MPTP-induced neuronal death. Cell Death Differ 23(3):542–552

Article  CAS  PubMed  Google Scholar 

Guo G, Bhat NR (2007) p38α MAP kinase mediates hypoxia-induced motor neuron cell death: a potential target of minocycline’s neuroprotective action. Neurochem Res 32:2160–2166

Article  CAS  PubMed  Google Scholar 

Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2018) Blood-brain barrier: from physiology to disease and back. Physiol Rev 99(1):21–78

Jeon M-T, Kim K-S, Kim ES, Lee S, Kim J, Hoe H-S, Kim D-G (2021) Emerging pathogenic role of peripheral blood factors following BBB disruption in neurodegenerative disease. Ageing Res Rev 68:101333

Article  CAS  PubMed  Google Scholar 

Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14(3):133–150

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Y, Xie L, Huang T, Zhang Y, Zhou J, Qi B, Wang X, Chen Z et al (2019) Aging neurovascular unit and potential role of DNA damage and repair in combating vascular and neurodegenerative disorders. Front Neurosci 13:778

Article  PubMed  PubMed Central  Google Scholar 

Kuperberg SJ, Wadgaonkar R (2017) Sepsis-associated encephalopathy: the blood–brain barrier and the sphingolipid rheostat. Front Immunol 8:597

Article  PubMed  PubMed Central  Google Scholar 

Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, Matsumoto M, Kato D et al (2019) Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun 10(1):5816

Article  CAS  PubMed  PubMed Central  Google Scholar 

Versele R, Sevin E, Gosselet F, Fenart L, Candela P (2022) TNF-α and IL-1β modulate blood-brain barrier permeability and decrease amyloid-β peptide efflux in a human blood-brain barrier model. Int J Mol Sci 23(18):10235

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hua LL, Zhao M-L, Cosenza M, Kim M-O, Huang H, Tanowitz HB, Brosnan CF, Lee SC (2002) Role of mitogen-activated protein kinases in inducible nitric oxide synthase and TNFα expression in human fetal astrocytes. J Neuroimmunol 126(1-2):180–189

Article  CAS  PubMed  Google Scholar 

Tong X-K, Hamel E (2007) Transforming growth factor-β1 impairs endothelin-1-mediated contraction of brain vessels by inducing mitogen-activated protein (MAP) kinase phosphatase-1 and inhibiting p38 MAP kinase. Mol Pharmacol 72(6):1476–1483

Article  CAS  PubMed  Google Scholar 

Nito C, Kamada H, Endo H, Niizuma K, Myer DJ, Chan PH (2008) Role of the p38 mitogen-activated protein kinase/cytosolic phospholipase A2 signaling pathway in blood—brain barrier disruption after focal cerebral ischemia and reperfusion. J Cereb Blood Flow Metab 28(10):1686–1696

Article  CAS  PubMed  Google Scholar 

Anwar A, Rajendran K, Siddiqui R, Raza Shah M, Khan NA (2018) Clinically approved drugs against CNS diseases as potential therapeutic agents to target brain-eating amoebae. ACS Chem Neurosci 10(1):658–666

Article  PubMed  Google Scholar 

Wager TT, Hou X, Verhoest PR, Villalobos A (2016) Central nervous system multiparameter optimization desirability: application in drug discovery. ACS Chem Neurosci 7(6):767–775

Article  CAS  PubMed  Google Scholar 

Danta CC (2020) CNS penetration ability: a critical factor for drugs in the treatment of SARS-CoV-2 brain infection. ACS Chem Neurosci 11(15):2137–2144

Article  CAS  PubMed  Google Scholar 

Ghose AK, Herbertz T, Hudkins RL, Dorsey BD, Mallamo JP (2012) Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem Neurosci 3(1):50–68

Article  CAS 

Comments (0)

No login
gif