Barh D, Yiannakopoulou EC, Salawu EO, Bhattacharjee A, Chowbina S, Nalluri JJ, Ghosh P, Azevedo V. In silico disease model: from simple networks to complex diseases. In Verma AS, Singh A (eds.) Animal Biotechnology (Second Edition). 2020;Academic Press:441–60. https://doi.org/10.1016/B978-0-12-811710-1.00020-3.
Kotlyar M, Pastrello C, Rossos A, Jurisica I. Protein–protein interaction databases. In Ranganathan S, Gribskov M, Nakai K, Schönbach C (eds.) Encyclopedia of Bioinformatics and Computational Biology. 2019;Academic Press:988–996. https://doi.org/10.1016/B978-0-12-809633-8.20495-0.
Kumar DT, Sneha P, Uppin J, Usha S, Doss CG. Investigating the influence of hotspot mutations in protein–protein interaction of IDH1 homodimer protein: a computational approach. Adv Protein Chem Struct Biol. 2018;11:243–61.
Hardcastle I. Protein–protein interaction inhibitors in cancer. In: Reference module in chemistry, molecular sciences and chemical engineering; 2016. https://doi.org/10.1016/B978-0-12-409547-2.12392-3.
Ansari-Pour N, Razaghi-Moghadam Z, Barneh F, Jafari M. Testis-specific Y-centric protein-protein interaction network provides clues to the etiology of severe spermatogenic Failure. J Proteome Res. 2016;15(3):1011–22. https://doi.org/10.1021/acs.jproteome.5b01080.
Article CAS PubMed Google Scholar
Schiza C, Korbakis D, Panteleli E, Jarvi K, Drabovich AP, Diamandis EP. Discovery of a human testis-specific protein complex TEX101-DPEP3 and selection of its disrupting antibodies. Mol Cell Proteomics. 2018;17(12):2480–95. https://doi.org/10.1074/mcp.RA118.000749.
Article CAS PubMed PubMed Central Google Scholar
Silva JV, Yoon S, Domingues S, et al. Amyloid precursor protein interaction network in human testis: sentinel proteins for male reproduction. BMC Bioinform. 2015;16(1):12. https://doi.org/10.1186/s12859-014-0432-9.
Petit FG, Kervarrec C, Jamin SP, et al. Combining RNA and protein profiling data with network interactions identifies genes associated with spermatogenesis in mouse and human. Biol Reprod. 2015;92(3):71. https://doi.org/10.1095/biolreprod.114.126250.
Article CAS PubMed Google Scholar
Adrina C, Fernanda MC, Gonzalez E, Lucrecia P, Jorge AB. Interaction of proteins of epididymal origin with spermatozoa. Biol Reprod. 1980;23(4):737–42. https://doi.org/10.1095/biolreprod23.4.737.
Björkgren I, Sipilä P. The impact of epididymal proteins on sperm function. Reprod. 2019;158(5):R155–r167. https://doi.org/10.1530/rep-18-0589.
Kant K, Tomar AK, Sharma P, Kundu B, Singh S, Yadav S. Human epididymis protein 4 quantification and interaction network analysis in seminal plasma. Protein Pept Lett. 2019;26(6):458–65. https://doi.org/10.2174/0929866526666190327124919.
Article CAS PubMed Google Scholar
Mariani NAP, Camara AC, Silva AAS, et al. Epididymal protease inhibitor (EPPIN) is a protein hub for seminal vesicle-secreted protein SVS2 binding in mouse spermatozoa. Mol Cell Endocrinol. 2020;506:110754. https://doi.org/10.1016/j.mce.2020.110754.
Article CAS PubMed Google Scholar
Hadziselimovic F, Verkauskas G, Stadler M. A novel role for CFTR interaction with LH and FGF in azoospermia and epididymal maldevelopment caused by cryptorchidism. Basic Clin Androl. 2022;32(1):10. https://doi.org/10.1186/s12610-022-00160-0.
Article PubMed PubMed Central Google Scholar
Babu Munipalli S, Yenugu S. Uroplakin expression in the male reproductive tract of rat. Gen Comp Endocrinol. 2019;281:153–63. https://doi.org/10.1016/j.ygcen.2019.06.003.
Article CAS PubMed Google Scholar
Munipalli SB, Yenugu S. Uroplakin 1a knockout mice display marginal reduction in fecundity, decreased bacterial clearance capacity, and drastic changes in the testicular transcriptome. Reprod Sci. 2022;30(3):914–27. https://doi.org/10.1007/s43032-022-01057-z.
Article CAS PubMed Google Scholar
Darszon A, Nishigaki T, Beltran C, Treviño CL. Calcium channels in the development, maturation, and function of spermatozoa. Physiol Rev. 2011;91(4):1305–55. https://doi.org/10.1152/physrev.00028.2010.
Article CAS PubMed Google Scholar
Prabhu SM, Meistrich ML, McLaughlin EA, et al. Expression of c-Kit receptor mRNA and protein in the developing, adult and irradiated rodent testis. Reproduction. 2006;131(3):489–99. https://doi.org/10.1530/rep.1.00968.
Oduwole OO, Peltoketo H, Huhtaniemi IT. Role of follicle-stimulating hormone in spermatogenesis. Front Endocrinol. 2018;9:763. https://doi.org/10.3389/fendo.2018.00763.
Jégou A, Ziyyat A, Barraud-Lange V, et al. CD9 tetraspanin generates fusion competent sites on the egg membrane for mammalian fertilization. Proc Natl Acad Sci USA. 2011;108(27):10946–51. https://doi.org/10.1073/pnas.1017400108.
Article PubMed PubMed Central Google Scholar
Yamaguchi M. The potential role of regucalcin in kidney cell regulation: involvement in renal failure (Review). Int J Mol Med. 2015;36(5):1191–9. https://doi.org/10.3892/ijmm.2015.2343.
Article CAS PubMed Google Scholar
Sharma S, Pei X, Xing F, et al. Regucalcin promotes dormancy of prostate cancer. Oncogene. 2021;40(5):1012–26. https://doi.org/10.1038/s41388-020-01565-9.
Article CAS PubMed Google Scholar
Laurentino SS, Correia S, Cavaco JE, et al. Regucalcin, a calcium-binding protein with a role in male reproduction? Mol Hum Reprod. 2012;18(4):161–70. https://doi.org/10.1093/molehr/gar075.
Article CAS PubMed Google Scholar
Pillai H, Shende AM, Parmar MS, et al. Regucalcin is widely distributed in the male reproductive tract and exerts a suppressive effect on in vitro sperm capacitation in the water buffalo (Bubalus bubalis). Mol Reprod Dev. 2017;84(3):212–21. https://doi.org/10.1002/mrd.22767.
Article CAS PubMed Google Scholar
Zhang Q, Ji SY, Busayavalasa K, Shao J, Yu C. Meiosis I progression in spermatogenesis requires a type of testis-specific 20S core proteasome. Nat Commun. 2019;10(1):3387. https://doi.org/10.1038/s41467-019-11346-y.
Article CAS PubMed PubMed Central Google Scholar
Zhang ZH, Jiang TX, Chen LB, et al. Proteasome subunit α4s is essential for formation of spermatoproteasomes and histone degradation during meiotic DNA repair in spermatocytes. J Biol Chem. 2021;296:100130. https://doi.org/10.1074/jbc.RA120.016485.
Article CAS PubMed Google Scholar
UniProt. UniProtKB - P20618 (PSB1_HUMAN): Proteasome subunit beta type-1. Accessed 26 June, 2022. https://www.uniprot.org/uniprot/P20618
Zhang N, Liang J, Tian Y, et al. A novel testis-specific GTPase serves as a link to proteasome biogenesis: functional characterization of RhoS/RSA-14-44 in spermatogenesis. Mol Biol Cell. 2010;21(24):4312–24. https://doi.org/10.1091/mbc.E10-04-0310.
Comments (0)