F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: Cancer J. Clin. 68, 394–424 (2018). https://doi.org/10.3322/caac.21492
K.K. Ang, J. Harris, R. Wheeler, R. Weber, D.I. Rosenthal, P.F. Nguyen-Tân, W.H. Westra, C.H. Chung, R.C. Jordan, C. Lu et al., Human Papillomavirus and Survival of Patients with Oropharyngeal Cancer. N. Engl. J. Med. 363(1), 24–35 (2010). https://doi.org/10.1056/NEJMoa0912217
Article CAS PubMed PubMed Central Google Scholar
P. Lassen, The role of Human papillomavirus in head and neck cancer and the impact on radiotherapy outcome. Radiother. Oncol. 95(3), 371–380 (2010). https://doi.org/10.1016/j.radonc.2010.04.022
C.R. Leemans, B.J.M. Braakhuis, R.H. Brakenhoff, The molecular biology of head and neck cancer. Nat. Rev. Cancer 11(1), 9–22 (2011). https://doi.org/10.1038/nrc2982
Article CAS PubMed Google Scholar
Y. Suh, I. Amelio, T. Guerrero Urbano, M. Tavassoli, Clinical update on cancer: molecular oncology of head and neck cancer. Cell Death Dis. 5, e1018 (2014). https://doi.org/10.1038/cddis.2013.548
Article CAS PubMed PubMed Central Google Scholar
N. Vigneswaran, M.D. Williams, Epidemiologic Trends in Head and Neck Cancer and Aids in Diagnosis. Oral Maxillofac. Surg. Clin. North Am. 26(2), 123–141 (2014). https://doi.org/10.1016/j.coms.2014.01.001
Article PubMed PubMed Central Google Scholar
M. Buglione, M. Maddalo, R. Corvò, L. Pirtoli, F. Paiar, L. Lastrucci, M. Stefanacci, L. Belgioia, M. Crociani, S. Vecchio et al., Subgroup Analysis According to Human Papillomavirus Status and Tumor Site of a Randomized Phase II Trial Comparing Cetuximab and Cisplatin Combined With Radiation Therapy for Locally Advanced Head and Neck Cancer. Int. J. Radiat. Oncol. Biol. Phys. 97(3), 462–472 (2017). https://doi.org/10.1016/j.ijrobp.2016.10.011
Article CAS PubMed Google Scholar
S.M. Magrini, M. Buglione, R. Corvò, L. Pirtoli, F. Paiar, P. Ponticelli, A. Petrucci, A. Bacigalupo, M. Crociani, L. Lastrucci et al., Cetuximab and Radiotherapy Versus Cisplatin and Radiotherapy for Locally Advanced Head and Neck Cancer: A Randomized Phase II Trial. J. Clin. Oncol. 34(5), 427–435 (2016). https://doi.org/10.1200/JCO.2015.63.1671
Article CAS PubMed Google Scholar
P.J.A. Eichhorn, M.P. Creyghton, R. Bernards, Protein phosphatase 2A regulatory subunits and cancer. Biochim. Biophys. Acta Rev. Cancer 1795, 1–15 (2009). https://doi.org/10.1016/j.bbcan.2008.05.005
V. Janssens, J. Goris, Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J. 353, 417–439 (2001). https://doi.org/10.1042/0264-6021:3530417
Article CAS PubMed PubMed Central Google Scholar
B. Meeusen, V. Janssens, Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int. J. Biochem. Cell Biol. 96(October 2017), 98–134 (2018). https://doi.org/10.1016/j.biocel.2017.10.002
Article CAS PubMed Google Scholar
C. Lambrecht, D. Haesen, W. Sents, E. Ivanova, V. Janssens, Structure, Regulation, and Pharmacological Modulation of PP2A Phosphatases. Methods Mol. Biol. (2013). https://doi.org/10.1007/978-1-62703-562-0_17
A.K. Freeman, A.N.A. Monteiro, Phosphatases in the cellular response to DNA damage. Cell Commun. Signal. 8(27), 1–12 (2010). (Retrieved from papers3://publication/uuid/EF6F07AF-1C3F-463E-B489-19FE4E4D4591)
D.H. Lee, D. Chowdhury, What Goes On Must Come Off: phosphatases gate-crash the DNA damage response. Trends Biochem. Sci. 36(11), 569–577 (2011). https://doi.org/10.1016/j.pmrj.2014.02.014.Lumbar
Article CAS PubMed PubMed Central Google Scholar
A. Peng, J.L. Maller, Serine/threonine phosphatases in the DNA damage response and cancer. Oncogene 29, 5977–5988 (2010). https://doi.org/10.1038/onc.2010.371
Article CAS PubMed Google Scholar
A. Sule, S.E. Golding, S.F. Ahmad, J. Watson, M.H. Ahmed, G.E. Kellogg, T. Bernas, S. Koebley, J.C. Reed, L.F. Povirk et al., ATM phosphorylates PP2A subunit A resulting in nuclear export and spatiotemporal regulation of the DNA damage response. Cell. Mol. Life Sci. 79, 603 (2022). https://doi.org/10.1007/s00018-022-04550-5
Article CAS PubMed PubMed Central Google Scholar
X.F. Zheng, P. Kalev, D. Chowdhury, Emerging role of protein phosphatases changes the landscape of phospho-signaling in DNA damage response. DNA Repair 32, 58–65 (2015). https://doi.org/10.1016/j.dnarep.2015.04.014
Article CAS PubMed Google Scholar
T.J. Haanen, C.M. O’Connor, G. Narla, Biased holoenzyme assembly of protein phosphatase 2A (PP2A): From cancer to small molecules. J. Biol. Chem. 298(12), 102656 (2022). https://doi.org/10.1016/j.jbc.2022.102656
Article CAS PubMed PubMed Central Google Scholar
J. Sangodkar, C.C. Farrington, K. McClinch, M.D. Galsky, D.B. Kastrinsky, G. Narla, All roads lead to PP2A: Exploiting the therapeutic potential of this phosphatase. FEBS J. 283(6), 1004–1024 (2016). https://doi.org/10.1111/febs.13573
Article CAS PubMed Google Scholar
B.K. Velmurugan, C.H. Lee, S.L. Chiang, C.H. Hua, M.C. Chen, S.H. Lin, K.T. Yeh, Y.C. Ko, PP2A deactivation is a common event in oral cancer and reactivation by FTY720 shows promising therapeutic potential. J. Cell. Physiol. 233, 1300–1311 (2018). https://doi.org/10.1002/jcp.26001
Article CAS PubMed Google Scholar
H.Y. Wang, H. Yuan, J.H. Liu, B.L. Wang, K.L. Xu, P. Huang, Z.H. Lin, L.H. Xu, Comparative analysis of a panel of biomarkers related to protein phosphatase 2A between laryngeal squamous cell carcinoma tissues and adjacent normal tissues. J. Zhejiang Univ.: Sci. B 20(9), 776–780 (2019). https://doi.org/10.1631/jzus.B1900179
O.G. Gouttia, J. Zhao, Y. Li, M.J. Zwiener, L. Wang, G.G. Oakley, A. Peng, The MASTL-ENSA-PP2A/B55 axis modulates cisplatin resistance in oral squamous cell carcinoma. Front. Cell Dev. Biol. 10, 1–10 (2022). https://doi.org/10.3389/fcell.2022.904719
M.R. Junttila, P. Puustinen, M. Niemelä, R. Ahola, H. Arnold, T. Böttzauw, R. Ala-aho, C. Nielsen, J. Ivaska, Y. Taya et al., CIP2A Inhibits PP2A in Human Malignancies. Cell 130(1), 51–62 (2007). https://doi.org/10.1016/j.cell.2007.04.044
Article CAS PubMed Google Scholar
J. Katz, A. Jakymiw, M.K. Ducksworth, C.M. Stewart, I. Bhattacharyya, S. Cha, E.K.L. Chan, CIP2A expression and localization in oral carcinoma and dysplasia. Cancer Biol. Ther. 10(7), 694–699 (2010). https://doi.org/10.4161/cbt.10.7.12895
Article CAS PubMed PubMed Central Google Scholar
A.M. Leopoldino, C.H. Squarize, C.B. Garcia, L.O. Almeida, C.R. Pestana, L.M. Sobral, S.A. Uyemura, E.H. Tajara, S.J. Gutkind, C. Curti, SET protein accumulates in HNSCC and contributes to cell survival: Antioxidant defense, Akt phosphorylation and AVOs acidification. Oral Oncol. 48(11), 1106–1113 (2012). https://doi.org/10.1016/j.oraloncology.2012.05.014
Article CAS PubMed Google Scholar
V. Patel, B.L. Hood, A.A. Molinolo, N.H. Lee, T.P. Conrads, J.C. Braisted, D.B. Krizman, T.D. Veenstra, J.S. Gutkind, Proteomic analysis of laser-captured paraffin-embedded tissues: A molecular portrait of head and neck cancer progression. Clin. Cancer Res. 14(4), 1002–1014 (2008). https://doi.org/10.1158/1078-0432.CCR-07-1497
Article CAS PubMed Google Scholar
S. Ventelä, E. Sittig, L. Mannermaa, J.-A. Mäkelä, J. Kulmala, E. Löyttyniemi, L. Strauss, O. Cárpen, J. Toppari, R. Grénman et al., CIP2A is an Oct4 target gene involved in head and neck squamous cell cancer oncogenicity and radioresistance. Oncotarget 6(1), 144–158 (2014). https://doi.org/10.18632/oncotarget.2670
Article PubMed Central Google Scholar
R. Alzahrani, A.A. Alrehaili, A.F. Gharib, F. Anjum, K.A. Ismail, W.H. Elsawy, Cancerous Inhibitor of Protein Phosphatase 2A as a Molecular Marker for Aggressiveness and Survival in Oral Squamous Cell Carcinoma. J. Cancer Prev. 25(1), 21–26 (2020). https://doi.org/10.15430/jcp.2020.25.1.21
Article PubMed PubMed Central Google Scholar
C. Böckelman, J. Hagström, L.K. Mäkinen, H. Keski-Säntti, V. Häyry, J. Lundin, T. Atula, A. Ristimäki, C. Haglund, High CIP2A immunoreactivity is an independent prognostic indicator in early-stage tongue cancer. Br. J. Cancer 104, 1890–1895 (2011). https://doi.org/10.1038/bjc.2011.167
Article PubMed PubMed Central Google Scholar
N. Liu, Q.-M. He, J.-W. Chen, Y.-Q. Li, Y.-F. Xu, X.-Y. Ren, Y. Sun, H.-Q. Mai, J.-Y. Shao, W.-H. Jia et al., Overexpression of CIP2A is an independent prognostic indicator in nasopharyngeal carcinoma and its depletion suppresses cell proliferation and tumor growth. Mol. Cancer 13(1), 111 (2014). https://doi.org/10.1186/1476-4598-13-111
Article CAS PubMed PubMed Central Google Scholar
A.T. Ouchida, V.T. Uyemura, A.L. Queiroz, V.S. Brauer, M.P. Cavalcanti-Neto, L.O. Sousa, S.A. Uyemura, C. Curti, A.M. Leopoldino, SET protein accumulation prevents cell death in head and neck squamous cell carcinoma through regulation of redox state and autophagy. Biochim. Biophys. Acta – Mol. Cell Res. 1866, 623–637 (2019). https://doi.org/10.1016/j.bbamcr.2019.01.005
Article CAS PubMed Google Scholar
J. Routila, T. Bilgen, O. Saramäki, R. Grénman, T. Visakorpi, J. Westermarck, S. Ventelä, Copy number increase of oncoprotein CIP2A is associated with poor patient survival in human head and neck squamous cell carcinoma. J. Oral Pathol. Med. 45, 329–337 (2016).
Comments (0)