R.L. Siegel, K.D. Miller, N.S. Wagle, A. Jemal, Cancer statistics, 2023. CA Cancer J. Clin. 73(1), 17–48 (2023)
X.-J. Luo, Q. Zhao, J. Liu, J.-B. Zheng, M.-Z. Qiu, H.-Q. Ju, R.-H. Xu, Novel genetic and epigenetic biomarkers of prognostic and predictive significance in stage II/III colorectal cancer. Mol. Ther. 29(2), 587–596 (2021)
Article CAS PubMed Google Scholar
Y. Qin, A.S. Havulinna, Y. Liu, P. Jousilahti, S.C. Ritchie, A. Tokolyi, J.G. Sanders, L. Valsta, M. Brożyńska, Q. Zhu et al., Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat. Genet. 54(2), 134–142 (2022)
Article CAS PubMed PubMed Central Google Scholar
M. Song, A.T. Chan, J. Sun, Influence of the gut microbiome, diet, and environment on risk of colorectal cancer. Gastroenterology 158(2), 322–340 (2020)
Article CAS PubMed Google Scholar
S.H. Wong, J. Yu, Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 16(11), 690–704 (2019)
Article CAS PubMed Google Scholar
S.H. Wong, L. Zhao, X. Zhang, G. Nakatsu, J. Han, W. Xu, X. Xiao, T.N.Y. Kwong, H. Tsoi, W.K.K. Wu et al., Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology. 153(6), 1621–1633.e6 (2017)
L. Li, X. Li, W. Zhong, M. Yang, M. Xu, Y. Sun, J. Ma, T. Liu, X. Song, W. Dong et al., Gut microbiota from colorectal cancer patients enhances the progression of intestinal adenoma in Apcmin/+ mice. EBioMedicine 48, 301–315 (2019)
Article CAS PubMed PubMed Central Google Scholar
J. Yang, H. Wei, Y. Zhou, C.-H. Szeto, C. Li, Y. Lin, O.O. Coker, H.C.H. Lau, A.W.H. Chan, J.J.Y. Sung et al., High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites. Gastroenterology 162(1), 135–149.e2 (2022)
A. Joseph, J. Roper, Genetic evidence that a gut commensal bacterium can cause colorectal cancer. Gastroenterology 160(4), 1424–1426 (2021)
S. Vivarelli, R. Salemi, S. Candido, L. Falzone, M. Santagati, S. Stefani, F. Torino, G.L. Banna, G. Tonini, M. Libra, Gut microbiota and cancer: from pathogenesis to therapy. Cancers (Basel) 11(1), 38 (2019)
C. Kong, X. Yan, Y. Zhu, H. Zhu, Y. Luo, P. Liu, S. Ferrandon, M.F. Kalady, R. Gao, J. He et al., Fusobacterium nucleatum promotes the development of colorectal cancer by activating a cytochrome P450/epoxyoctadecenoic acid axis via TLR4/Keap1/NRF2 signaling. Cancer Res. 81(17), 4485–4498 (2021)
Article CAS PubMed Google Scholar
C.C. Wong, J. Yu, Gut microbiota in colorectal cancer development and therapy. Nat. Rev. Clin. Oncol. 20(7), 429–452 (2023)
K. Oliphant, E. Allen-Vercoe, Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome 7(1), 91 (2019)
Article PubMed PubMed Central Google Scholar
J. Xing, Y. Fang, W. Zhang, H. Zhang, D. Tang, D. Wang, Bacterial driver-passenger model in biofilms: a new mechanism in the development of colorectal cancer. Clin. Transl. Oncol. 24(5), 784–795 (2022)
Article CAS PubMed Google Scholar
T. Liu, Z. Guo, X. Song, L. Liu, W. Dong, S. Wang, M. Xu, C. Yang, B. Wang, H. Cao, High-fat diet-induced dysbiosis mediates MCP-1/CCR2 axis-dependent M2 macrophage polarization and promotes intestinal adenoma-adenocarcinoma sequence. J. Cell. Mol. Med. 24(4), 2648–2662 (2020)
Article CAS PubMed PubMed Central Google Scholar
W. Zhang, Y. An, X. Qin, X. Wu, X. Wang, H. Hou, X. Song, T. Liu, B. Wang, X. Huang et al., Gut microbiota-derived metabolites in colorectal cancer: the bad and the challenges. Front. Oncol. 11, 739648 (2021)
Article CAS PubMed PubMed Central Google Scholar
J. Xu, A. Cheng, B. Song, M. Zhao, J. Xue, A. Wang, L. Dai, J. Jing, X. Meng, H. Li et al., Trimethylamine N-oxide and stroke recurrence depends on ischemic stroke subtypes. Stroke 53(4), 1207–1215 (2022)
Article CAS PubMed Google Scholar
V.E. Brunt, R.A. Gioscia-Ryan, A.G. Casso, N.S. VanDongen, B.P. Ziemba, Z.J. Sapinsley, J.J. Richey, M.C. Zigler, A.P. Neilson, K.P. Davy et al., Trimethylamine-N-oxide promotes age-related vascular oxidative stress and endothelial dysfunction in mice and healthy humans. Hypertension 76(1), 101–112 (2020)
Article CAS PubMed Google Scholar
D. Li, Y. Lu, S. Yuan, X. Cai, Y. He, J. Chen, Q. Wu, D. He, A. Fang, Y. Bo et al., Gut microbiota-derived metabolite trimethylamine-N-oxide and multiple health outcomes: an umbrella review and updated meta-analysis. Am. J. Clin. Nutr. 116(1), 230–243 (2022)
Article PubMed PubMed Central Google Scholar
Z. Wang, E. Klipfell, B.J. Bennett, R. Koeth, B.S. Levison, B. Dugar, A.E. Feldstein, E.B. Britt, X. Fu, Y.-M. Chung et al., Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341), 57–63 (2011)
Article ADS CAS PubMed PubMed Central Google Scholar
R.A. Koeth, Z. Wang, B.S. Levison, J.A. Buffa, E. Org, B.T. Sheehy, E.B. Britt, X. Fu, Y. Wu, L. Li et al., Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19(5), 576–585 (2013)
Article CAS PubMed PubMed Central Google Scholar
X. Liu, H. Liu, C. Yuan, Y. Zhang, W. Wang, S. Hu, L. Liu, Y. Wang, Preoperative serum TMAO level is a new prognostic marker for colorectal cancer. Biomark Med. 11(5), 443–447 (2017)
Article CAS PubMed Google Scholar
R. Xu, Q. Wang, L. Li, A genome-wide systems analysis reveals strong link between colorectal cancer and trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat. BMC Genom. 16(Suppl 7), S4 (2015)
S. Bae, C.M. Ulrich, M.L. Neuhouser, O. Malysheva, L.B. Bailey, L. Xiao, E.C. Brown, K.L. Cushing-Haugen, Y. Zheng, T.-Y.D. Cheng et al., Plasma choline metabolites and colorectal cancer risk in the Women’s Health Initiative Observational Study. Cancer Res. 74(24), 7442–7452 (2014)
Article CAS PubMed PubMed Central Google Scholar
R. Jalandra, N. Dalal, A.K. Yadav, D. Verma, M. Sharma, R. Singh, A. Khosla, A. Kumar, P.R. Solanki, Emerging role of trimethylamine-N-oxide (TMAO) in colorectal cancer. Appl. Microbiol. Biotechnol. 105(20), 7651–7660 (2021)
Article CAS PubMed Google Scholar
K.A. Guertin, X.S. Li, B.I. Graubard, D. Albanes, S.J. Weinstein, J.J. Goedert, Z. Wang, S.L. Hazen, R. Sinha, Serum trimethylamine N-oxide, carnitine, choline, and betaine in relation to colorectal cancer risk in the alpha tocopherol, beta carotene cancer prevention study. Cancer Epidemiol. Biomarkers Prev. 26(6), 945–952 (2017)
Article CAS PubMed PubMed Central Google Scholar
J. Vaquero, M.J. Monte, M. Dominguez, J. Muntané, J.J.G. Marin, Differential activation of the human farnesoid X receptor depends on the pattern of expressed isoforms and the bile acid pool composition. Biochem. Pharmacol. 86(7), 926–939 (2013)
Article CAS PubMed Google Scholar
D.-J. Shin, L. Wang, Bile acid-activated receptors: a review on FXR and other nuclear receptors. Handb. Exp. Pharmacol. 25, 651–672 (2019)
L. Liu, M. Yang, W. Dong, T. Liu, X. Song, Y. Gu, S. Wang, Y. Liu, Z. Abla, X. Qiao et al., Gut dysbiosis and abnormal bile acid metabolism in colitis-associated cancer. Gastroenterol. Res. Pract. 2021, 6645970 (2021)
Article PubMed PubMed Central Google Scholar
Y. Qiu, J. Yu, Y. Li, F. Yang, H. Yu, M. Xue, F. Zhang, X. Jiang, X. Ji, Z. Bao, Depletion of gut microbiota induces skeletal muscle atrophy by FXR-FGF15/19 signalling. Ann. Med. 53(1), 508–522 (2021)
Article CAS PubMed PubMed Central Google Scholar
M. Jiang, F. Li, Y. Liu, Z. Gu, L. Zhang, J. Lee, L. He, V. Vatsalya, H.-G. Zhang, Z. Deng et al., Probiotic-derived nanoparticles inhibit ALD through intestinal miR194 suppression and subsequent FXR activation. Hepatology 77(4), 1164–1180 (2023)
T. Fu, S. Coulter, E. Yoshihara, T.G. Oh, S. Fang, F. Cayabyab, Q. Zhu, T. Zhang, M. Leblanc, S. Liu et al., FXR regulates intestinal cancer stem cell proliferation. Cell 176(5), 1098–1112.e18 (2019)
S. Guo, Y. Peng, Y. Lou, L. Cao, J. Liu, N. Lin, S. Cai, Y. Kang, S. Zeng, L. Yu, Downregulation of the farnesoid X receptor promotes colorectal tumorigenesis by facilitating enterotoxigenic Bacteroides fragilis colonization. Pharmacol. Res. 177, 106101 (2022)
Article CAS PubMed Google Scholar
X. Tan, Y. Liu, J. Long, S. Chen, G. Liao, S. Wu, C. Li, L. Wang, W. Ling, H. Zhu, Trimethylamine N-oxide aggravates liver steatosis through modulation of bile acid metabolism and inhibition of farnesoid X receptor signaling in nonalcoholic fatty liver disease. Mol. Nutr. Food Res. 63(17), e1900257 (2019)
J. Qiao, Y. Liang, Y. Wang, Morigen, Trimethylamine N-oxide reduces the susceptibility of escherichia coli to multiple antibiotics. Front. Microbiol. 13, 956673 (2022)
Article PubMed PubMed Central Google Scholar
G.D. O’Connell, J.V. Fong, N. Dunleavy, A. Joffe, G.A. Ateshian, C.T. Hung, Trimethylamine N-oxide as a media supplement for cartilage tissue engineering. J. Orthop. Res. 30(12), 1898–1905 (2012)
Article PubMed PubMed Central Google Scholar
G. Mirji, A. Worth, S.A. Bhat, M. El Sayed, T. Kannan, A.R. Goldman, H.-Y. Tang, Q. Liu, N. Auslander, C.V. Dang et al., The microbiome-derived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer. Sci. Immunol. 7(75), eabn0704 (2022)
Comments (0)