P. Syed et al., Autoantibody Profiling of Glioma Serum Samples to identify biomarkers using human proteome arrays. Sci. Rep. 5, 13895 (2015)
Article CAS PubMed PubMed Central Google Scholar
P.Y. Wen, S. Kesari, Malignant gliomas in adults. N Engl. J. Med. 359(5), 492–507 (2008)
Article CAS PubMed Google Scholar
H.S. Phillips et al., Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of Disease progression, and resemble stages in neurogenesis. Cancer Cell. 9(3), 157–173 (2006)
Article CAS PubMed Google Scholar
R. Stupp et al., Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10(5), 459–466 (2009)
Article CAS PubMed Google Scholar
B. Faubert, A. Solmonson, R.J. DeBerardinis, Metabolic reprogramming and cancer progression. Science. 368(6487), 152– (2020)
I. Martinez-Reyes, N.S. Chandel, Cancer metabolism: looking forward. Nat. Rev. Cancer. 21(10), 669–680 (2021)
Article CAS PubMed Google Scholar
D.D. Shi et al., De novo pyrimidine synthesis is a targetable vulnerability in IDH mutant glioma. Cancer Cell. 40(9), 939– (2022)
Article CAS PubMed PubMed Central Google Scholar
G. Li et al., Pyrimidine biosynthetic enzyme CAD: its function, regulation, and diagnostic potential. Int. J. Mol. Sci., 22(19), 10253 (2021)
J. Shin et al., Allosteric regulation of CAD modulates de novo pyrimidine synthesis during the cell cycle. Nat. Metabolism. 5(2), 277– (2023)
J.A. Cox et al., Novel role for carbamoyl phosphate synthetase 2 in cranial sensory circuit formation. Int. J. Dev. Neurosci. 33, 41–48 (2014)
Article CAS PubMed Google Scholar
D.A. Ridder et al., Key enzymes in Pyrimidine Synthesis, CAD and CPS1, predict prognosis in Hepatocellular Carcinoma. Cancers (Basel), 13(4), 744 (2021)
R.J. Miltenberger, K.A. Sukow, P.J. Farnham, An e-box-mediated increase in cad transcription at the G1/S-phase boundary is suppressed by inhibitory c-Myc mutants. Mol. Cell. Biol. 15(5), 2527–2535 (1995)
Article CAS PubMed PubMed Central Google Scholar
J. Shin et al., Allosteric regulation of CAD modulates de novo pyrimidine synthesis during the cell cycle. Nat. Metab. 5(2), 277–293 (2023)
Article CAS PubMed PubMed Central Google Scholar
L. Lee et al., Oligomeric structure of the multifunctional protein CAD that initiates pyrimidine biosynthesis in mammalian cells. Proc. Natl. Acad. Sci. U S A 82(20), 6802–6806 (1985)
Article CAS PubMed PubMed Central Google Scholar
M. Moreno-Morcillo et al., Structural insight into the core of CAD, the multifunctional protein leading De Novo Pyrimidine Biosynthesis. Structure. 25(6), 912– (2017)
Article CAS PubMed Google Scholar
I. Ben-Sahra et al., Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339(6125), 1323-1328 (2013)
D.H. Kotsis et al., Protein kinase a phosphorylation of the multifunctional protein CAD antagonizes activation by the MAP kinase cascade. Mol. Cell. Biochem. 301(1–2), 69–81 (2007)
Article CAS PubMed Google Scholar
L.M. Graves et al., Regulation of carbamoyl phosphate synthetase by MAP kinase. Nature. 403(6767), 328–332 (2000)
Article CAS PubMed Google Scholar
Y. Sha et al., STUB1 regulates TFEB-induced autophagy-lysosome pathway. EMBO J. 36(17), 2544–2552 (2017)
Article CAS PubMed PubMed Central Google Scholar
C.A. Ballinger et al., Identification of CHIP, a Novel Tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell Biol. 19(6), 4535–4545 (1999)
C. Cook et al., Loss of HDAC6, a novel CHIP substrate, alleviates abnormal tau accumulation. Hum. Mol. Genet. 21(13), 2936–2945 (2012)
Article CAS PubMed PubMed Central Google Scholar
S.M. Ronnebaum et al., The ubiquitin ligase CHIP prevents SirT6 degradation through noncanonical ubiquitination. Mol. Cell. Biol. 33(22), 4461–4472 (2013)
Article CAS PubMed PubMed Central Google Scholar
Y. Kopp et al., CHIP as a membrane-shuttling proteostasis sensor. Elife, 6, e29388 (2017)
S.F. Ahmed et al., The chaperone-assisted E3 ligase C terminus of Hsc70-interacting protein (CHIP) targets PTEN for proteasomal degradation. J. Biol. Chem. 287(19), 15996–16006 (2012)
Article CAS PubMed PubMed Central Google Scholar
M.M. Al Mamun et al., Stub1 maintains proteostasis of master transcription factors in embryonic stem cells. Cell Rep., 39(10), 110919 (2022)
C.F. Liu et al., Proteostasis by STUB1/HSP70 complex controls sensitivity to androgen receptor targeted therapy in advanced Prostate cancer. Nat. Commun., 9(1), 4700 (2018)
I. Paul et al., The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity. Oncogene. 32(10), 1284–1295 (2013)
Article CAS PubMed Google Scholar
M. Kajiro et al., The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat. Cell Biol. 11(3), 312–U190 (2009)
Article CAS PubMed Google Scholar
G. Zhao et al., DDX39B drives Colorectal cancer progression by promoting the stability and nuclear translocation of PKM2. Signal Transduct. Target. Therapy, 7(1), 275 (2022)
T. Xu et al., Carboxyl terminus of Hsp70-interacting protein (CHIP) contributes to human glioma oncogenesis. Cancer Sci. 102(5), 959–966 (2011)
Article CAS PubMed Google Scholar
J. Hou et al., CSN6 controls the proliferation and Metastasis of glioblastoma by CHIP-mediated degradation of EGFR. Oncogene. 36(8), 1134–1144 (2017)
Article CAS PubMed Google Scholar
H.R. Ko et al., P42 Ebp1 regulates the proteasomal degradation of the p85 regulatory subunit of PI3K by recruiting a chaperone-E3 ligase complex HSP70/CHIP. Cell. Death Dis. 5(3), e1131 (2014)
Article CAS PubMed PubMed Central Google Scholar
L.W. Sun et al., Corosolic acid attenuates the invasiveness of Glioblastoma Cells by promoting CHIP-Mediated AXL degradation and inhibiting GAS6/AXL/JAK Axis. Cells, 10(11), 2919 (2021)
T. Li, E. Ju, S.J. Gao, Kaposi sarcoma-associated herpesvirus miRNAs suppress CASTOR1-mediated mTORC1 inhibition to promote tumorigenesis. J. Clin. Invest. 129(8), 3310–3323 (2019)
Article PubMed PubMed Central Google Scholar
T.Y. Wang et al., The E3 Ubiquitin Ligase CHIP in Normal cell Function and in Disease Conditions, Ann N Y Acad Sci. 1460(1), 3-10 (2020)
K. Radovanac et al., Stabilization of integrin-linked kinase by the Hsp90-CHIP axis impacts cellular force generation, migration and the fibrotic response. EMBO J. 32(10), 1409–1424 (2013)
Article CAS PubMed PubMed Central Google Scholar
K.N. Swatek, D. Komander, Ubiquitin Modifications. Cell Research. 26(4), 399–422 (2016)
Article CAS PubMed Google Scholar
I. Dikic, B.A. Schulman, An expanded lexicon for the ubiquitin code. Nat. Rev. Mol. Cell Biol. 24(4), 273–287 (2023)
Article CAS PubMed Google Scholar
T. Li et al., RNF167 activates mTORC1 and promotes tumorigenesis by targeting CASTOR1 for ubiquitination and degradation. Nat. Commun. 12(1), 1055 (2021)
Article CAS PubMed PubMed Central Google Scholar
G. Herve, Structural insight into the core of CAD. Structure. 25(6), 819–820 (2017)
Article CAS PubMed Google Scholar
T.P. Mathews et al., Human phospholipase D activity transiently regulates pyrimidine biosynthesis in malignant gliomas. ACS Chem. Biol. 10(5), 1258–1268 (2015)
Article CAS PubMed PubMed Central Google Scholar
S. Rabinovich et al., Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature. 527(7578), 379–383 (2015)
Article CAS PubMed PubMed Central Google Scholar
G.R. Buel, S.G. Kim, J. Blenis, mTORC1 signaling Aids in CADalyzing pyrimidine biosynthesis. Cell. Metab. 17(5), 633–635 (2013)
Article CAS PubMed Google Scholar
L. Petrucelli et al., CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum. Mol. Genet. 13(7), 703–714 (2004)
Article CAS PubMed Google Scholar
P. Connell et al., The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat. Cell. Biol. 3(1), 93–96 (2001)
Comments (0)