Maher TM, et al. Global incidence and prevalence of idiopathic pulmonary fibrosis. Respir Res. 2021;22(1):197. https://doi.org/10.1186/s12931-021-01791-z.
Article PubMed PubMed Central Google Scholar
Warheit-Niemi HI, et al. Fibrotic lung disease inhibits immune responses to staphylococcal pneumonia via impaired neutrophil and macrophage function. JCI Insight. 2022;7(4): e152690. https://doi.org/10.1172/jci.insight.152690.
Article PubMed PubMed Central Google Scholar
Niclosamide Ethanolamine Salt Alleviates Idiopathic Pulmonary Fibrosis by Modulating the PI3K-mTORC1 Pathway
Fuertes E, et al. Leisure-time vigorous physical activity is associated with better lung function: the prospective ECRHS study. Thorax. 2018;73(4):376–84. https://doi.org/10.1136/thoraxjnl-2017-210947.
Piercy KL, et al. The Physical Activity Guidelines for Americans. JAMA. 2018;320(19):2020–8. https://doi.org/10.1001/jama.2018.14854.
Article PubMed PubMed Central Google Scholar
Dowman LM, et al. The evidence of benefits of exercise training in interstitial lung disease: a randomised controlled trial. Thorax. 2017;72(7):610–9. https://doi.org/10.1136/thoraxjnl-2016-208638.
Kataoka K, et al. Long-term effect of pulmonary rehabilitation in idiopathic pulmonary fibrosis: a randomised controlled trial. Thorax. 2023;78(8):784–91. https://doi.org/10.1136/thorax-2022-219792.
Dowman L, et al. Pulmonary rehabilitation for interstitial lung disease. Cochrane Database Syst Rev. 2014;10: CD006322. https://doi.org/10.1002/14651858.CD006322.pub3.
Vainshelboim B, et al. Lifestyle behaviors and clinical outcomes in idiopathic pulmonary fibrosis. Respir Int Rev Thorac Dis. 2018;95(1):27–34. https://doi.org/10.1159/000481202.
Vainshelboim B, et al. Physical activity and exertional desaturation are associated with mortality in idiopathic pulmonary fibrosis. J Clin Med. 2016;5(8):73. https://doi.org/10.3390/jcm5080073.
Article PubMed PubMed Central Google Scholar
Ma Y, et al. Lifestyle, genetic susceptibility, and the risk of idiopathic pulmonary fibrosis: a large prospective cohort study. Chest. 2023. https://doi.org/10.1016/j.chest.2023.04.008.
Nowak C, Ärnlöv J. A Mendelian randomization study of the effects of blood lipids on breast cancer risk. Nat Commun. 2018;9(1):3957. https://doi.org/10.1038/s41467-018-06467-9.
Article CAS PubMed PubMed Central Google Scholar
Razavi M, et al. US Food and Drug Administration approvals of drugs and devices based on nonrandomized clinical trials: a systematic review and meta-analysis. JAMA Netw Open. 2019;2(9): e1911111. https://doi.org/10.1001/jamanetworkopen.2019.11111.
Article PubMed PubMed Central Google Scholar
Richmond RC, Smith GD. Mendelian randomization: concepts and scope. Cold Spring Harbor Perspect Med. 2022;12(1): a040501. https://doi.org/10.1101/cshperspect.a040501.
Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89-98. https://doi.org/10.1093/hmg/ddu328.
Article CAS PubMed PubMed Central Google Scholar
Burgess S, Thompson SG. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am J Epidemiol. 2015;181(4):251–60. https://doi.org/10.1093/aje/kwu283.
Article PubMed PubMed Central Google Scholar
de Leeuw C, et al. Understanding the assumptions underlying Mendelian randomization. Eur J Hum Genet EJHG. 2022;30(6):653–60. https://doi.org/10.1038/s41431-022-01038-5.
Lawlor DA, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–63. https://doi.org/10.1002/sim.3034.
Klimentidis YC, et al. Genome-wide association study of habitual physical activity in over 377,000 UK Biobank participants identifies multiple variants including CADM2 and APOE. Int J Obes. 2018;42(6):1161–76. https://doi.org/10.1038/s41366-018-0120-3.
Doherty A, et al. GWAS identifies 14 loci for device-measured physical activity and sleep duration. Nat Commun. 2018;9(1):5257. https://doi.org/10.1038/s41467-018-07743-4.
Article CAS PubMed PubMed Central Google Scholar
Fry A, et al. Comparison of sociodemographic and health-related characteristics of UK biobank participants with those of the general population. Am J Epidemiol. 2017;186(9):1026–34. https://doi.org/10.1093/aje/kwx246.
Article PubMed PubMed Central Google Scholar
Doherty A, et al. Large scale population assessment of physical activity using wrist worn accelerometers: the UK Biobank Study. PLoS ONE. 2017;12(2): e0169649. https://doi.org/10.1371/journal.pone.0169649.
Article CAS PubMed PubMed Central Google Scholar
Yang Q, et al. Exploring and mitigating potential bias when genetic instrumental variables are associated with multiple non-exposure traits in Mendelian randomization. Eur J Epidemiol. 2022;37(7):683–700. https://doi.org/10.1007/s10654-022-00874-5.
Article PubMed PubMed Central Google Scholar
Bahls M, et al. Physical activity, sedentary behavior and risk of coronary artery disease, myocardial infarction and ischemic stroke: a two-sample Mendelian randomization study. Clin Res Cardiol. 2021;110(10):1564–73. https://doi.org/10.1007/s00392-021-01846-7.
Article CAS PubMed PubMed Central Google Scholar
Chen X, et al. Causal relationship between physical activity, leisure sedentary behaviors and COVID-19 risk: a Mendelian randomization study. J Transl Med. 2022;20(1):216. https://doi.org/10.1186/s12967-022-03407-6.
Article CAS PubMed PubMed Central Google Scholar
Lin T, et al. Vitamin D and idiopathic pulmonary fibrosis: a two-sample mendelian randomization study. BMC Pulm Med. 2023;23(1):309. https://doi.org/10.1186/s12890-023-02589-z.
Article CAS PubMed PubMed Central Google Scholar
Burgess S, et al. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40(3):755–64. https://doi.org/10.1093/ije/dyr036.
Hemani G, et al. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13(11): e1007081. https://doi.org/10.1371/journal.pgen.1007081.
Article CAS PubMed PubMed Central Google Scholar
Kurki MI, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613(7944):508–18. https://doi.org/10.1038/s41586-022-05473-8.
Article CAS PubMed PubMed Central Google Scholar
Milaneschi Y, et al. A role for vitamin D and omega-3 fatty acids in major depression? An exploration using genomics. Transl Psychiatry. 2019;9(1):219. https://doi.org/10.1038/s41398-019-0554-y.
Article CAS PubMed PubMed Central Google Scholar
Burgess S, et al. Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res. 2023;4:186. https://doi.org/10.12688/wellcomeopenres.15555.3.
Article PubMed PubMed Central Google Scholar
Bowden J, et al. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–25. https://doi.org/10.1093/ije/dyv080.
Article PubMed PubMed Central Google Scholar
Bowden J, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14. https://doi.org/10.1002/gepi.21965.
Article PubMed PubMed Central Google Scholar
Hartwig FP, et al. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–98. https://doi.org/10.1093/ije/dyx102.
Article PubMed PubMed Central Google Scholar
Zhu G, et al. Mendelian randomization study on the causal effects of omega-3 fatty acids on rheumatoid arthritis. Clin Rheumatol. 2022;41(5):1305–12. https://doi.org/10.1007/s10067-022-06052-y.
Hemani G, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7: e34408. https://doi.org/10.7554/eLife.34408.
Comments (0)