An allosteric redox switch involved in oxygen protection in a CO2 reductase

Dalle, K. E. et al. Electro- and solar-driven fuel synthesis with first row transition metal complexes. Chem. Rev. 119, 2752–2875 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, G. et al. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem. Soc. Rev. 50, 4993–5061 (2021).

Article  CAS  PubMed  Google Scholar 

Zhang, S., Fan, Q., Xia, R. & Meyer, T. J. CO2 reduction: from homogeneous to heterogeneous electrocatalysis. Acc. Chem. Res. 53, 2–11 (2019).

Google Scholar 

Shi, J. et al. Enzymatic conversion of carbon dioxide. Chem. Soc. Rev. 44, 5981–6000 (2015).

Article  CAS  PubMed  Google Scholar 

Yishai, O., Lindner, S. N., Gonzalez de la Cruz, J., Tenenboim, H. & Bar-Even, A. The formate bio-economy. Curr. Opin. Chem. Biol. 35, 1–9 (2016).

Article  CAS  PubMed  Google Scholar 

Mellmann, D., Sponholz, P., Junge, H. & Beller, M. Formic acid as a hydrogen storage material - development of homogeneous catalysts for selective hydrogen release. Chem. Soc. Rev. 45, 3954–3988 (2016).

Article  CAS  PubMed  Google Scholar 

Bulushev, D. & Ross, J. R. H. Towards sustainable production of formic acid from biomass for getting hydrogen and fuels. Chem. Sus. Chem. 11, 821–836 (2018).

Article  CAS  Google Scholar 

Reda, T., Plugge, C. M., Abram, N. J. & Hirst, J. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc. Natl Acad. Sci. USA 105, 10654–10658 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stripp, S. T. et al. Second and outer coordination sphere effects in nitrogenase, hydrogenase, formate dehydrogenase, and CO dehydrogenase. Chem. Rev. 122, 11900–11973 (2022).

Schuchmann, K. & Müller, V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 12, 809–821 (2014).

Article  CAS  PubMed  Google Scholar 

Plugge, C. M., Zhang, W., Scholten, J. C. M. & Stams, A. J. M. Metabolic flexibility of sulfate-reducing bacteria. Front. Microbiol. 2, 81 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sieber, J. R., Mcinerney, M. J. & Gunsalus, R. P. Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu Rev. Microbiol. 66, 429–452 (2012).

Article  CAS  PubMed  Google Scholar 

Niks, D. & Hille, R. Molybdenum‐ and tungsten‐containing formate dehydrogenases and formylmethanofuran dehydrogenases: structure, mechanism, and cofactor insertion. Protein Sci. 28, 111–122 (2019).

Article  CAS  PubMed  Google Scholar 

Oliveira, A. R. et al. Toward the mechanistic understanding of enzymatic CO2 reduction. ACS Catal. 10, 3844–3856 (2020).

Article  CAS  Google Scholar 

Dietrich, H. M. et al. Membrane-anchored HDCR nanowires drive hydrogen-powered CO2 fixation. Nature 607, 823–830 (2022).

Article  CAS  PubMed  Google Scholar 

Grimaldi, S., Schoepp-Cothenet, B., Ceccaldi, P., Guigliarelli, B. & Magalon, A. The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. Biochim. Biophys. Acta, Bioenerg. 1827, 1048–1085 (2013).

Article  CAS  Google Scholar 

Hille, R. Molybdenum and tungsten in biology. Trends Biochem. Sci. 27, 360–367 (2002).

Article  CAS  PubMed  Google Scholar 

Schwarz, F. M., Schuchmann, K. & Müller, V. Hydrogenation of CO2 at ambient pressure catalyzed by a highly active thermostable biocatalyst. Biotechnol. Biofuels 11, 237 (2018).

Article  PubMed  PubMed Central  Google Scholar 

da Silva, S. M., Pimentel, C., Valente, F. M. A. A., Rodrigues-Pousada, C. & Pereira, I. A. C. C. Tungsten and molybdenum regulation of formate dehydrogenase expression in Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 193, 2909–2916 (2011).

Article  PubMed  PubMed Central  Google Scholar 

da Silva, S. M. et al. Function of formate dehydrogenases in Desulfovibrio vulgaris Hildenborough energy metabolism. Microbiol. 159, 1760–1769 (2013).

Article  Google Scholar 

Miller, M. et al. Interfacing formate dehydrogenase with metal oxides for the reversible electrocatalysis and solar‐driven reduction of carbon dioxide. Angew. Chem. Int. Ed. 58, 4601–4605 (2019).

Article  CAS  Google Scholar 

Edwardes Moore, E. et al. A semi‐artificial photoelectrochemical tandem leaf witha CO2‐to‐formate efficiency approaching 1%. Angew. Chem. Int. Ed. 60, 26303–26307 (2021).

Article  CAS  Google Scholar 

Szczesny, J. et al. Electroenzymatic CO2 fixation using redox polymer/enzyme-modified gas diffusion electrodes. ACS Energy Lett. 5, 321–327 (2020).

Article  CAS  Google Scholar 

Alvarez-Malmagro, J. et al. Bioelectrocatalytic activity of W-formate dehydrogenase covalently immobilized on functionalized gold and graphite electrodes. ACS Appl. Mater. Interfaces 13, 11891–11900 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Antón-García, D. et al. Photoelectrochemical hybrid cell for unbiased CO2 reduction coupled to alcohol oxidation. Nat. Synth. 1, 77–86 (2022).

Article  Google Scholar 

De Bok, F. A. M. M. et al. Two W-containing formate dehydrogenases (CO2-reductases) involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans. Eur. J. Biochem. 270, 2476–2485 (2003).

Article  PubMed  Google Scholar 

Schuchmann, K. & Müller, V. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342, 1382–1385 (2013).

Article  CAS  PubMed  Google Scholar 

Raaijmakers, H. et al. Gene sequence and the 1.8 A crystal structure gene sequence and the 1.8 A of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas. Structure 10, 1261–1272 (2002).

Article  CAS  PubMed  Google Scholar 

Oliveira, A. R. et al. Spectroscopic and structural characterization of reduced Desulfovibrio vulgaris Hildenborough W-FdhAB reveals stable metal coordination during catalysis. ACS Chem. Biol. 17, 1901–1909 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vilela-Alves, G. et al. Tracking W-formate dehydrogenase structural changes during catalysis and enzyme reoxidation. Int. J. Mol. Sci. 24, 476 (2023).

Article  CAS  Google Scholar 

Grimaldi, S., Biaso, F., Burlat, B. & Guigliarelli, B. in Molybdenum and Tungsten Enzymes: Spectroscopic and Theoretical Investigations (eds Hille, R. et al.) 68–120 (The Royal Society of Chemistry, 2016).

Al-Attar, S. et al. Gating of substrate access and long-range proton transfer in Escherichia coli nitrate reductase A: the essential role of a remote glutamate residue. ACS Catal. 11, 14303–14318 (2021).

Article  CAS  Google Scholar 

Iwaoka, M. & Isozumi, N. Hypervalent nonbonded interactions of a divalent sulfur atom. Implications in protein architecture and the functions. Molecules 2, 7266–7283 (2012).

Article  Google Scholar 

Léger, C. & Bertrand, P. Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem. Rev. 108, 2379–2438 (2008).

Article  PubMed  Google Scholar 

Chiu, J. & Hogg, X. P. J. Allosteric disulfides: sophisticated molecular structures enabling flexible protein regulation. J. Biol. Chem. 294, 2949–5908 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hartmann, T. & Leimkühler, S. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate. FEBS J. 280, 6083–6096 (2013).

Article  CAS  PubMed  Google Scholar 

Yu, X., Niks, D., Mulchandani, A. & Hille, R. Efficient reduction of CO2 by the molybdenum-containing formate dehydrogenase from Cupriavidus necator (Ralstonia eutropha). J. Biol. Chem. 292, 16872–16879 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Graham, J. E. et al. How a formate dehydrogenase responds to oxygen: unexpected O2 insensitivity of an enzyme harboring tungstate, selenocysteine, and [4Fe-4S] clusters. ACS Catal. 12, 10449–10471 (2022).

Hogg, P. J. Disulfide bonds as switches for protein function. Trends Biochem. Sci. 28, 210–214 (2003).

Article  CAS  PubMed  Google Scholar 

Wensien, M. et al. A lysine-cysteine redox switch with an NOS bridge regulates enzyme function. Nature 593, 460–464 (2021).

Article  CAS  PubMed  Google Scholar 

Rabe von Pappenheim, F. et al. Widespread occurrence of covalent lysine–cysteine redox switches in proteins. Nat. Chem. Biol. 18, 368–375 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schrapers, P. et al. Sulfido and cysteine ligation changes

Comments (0)

No login
gif