Dalle, K. E. et al. Electro- and solar-driven fuel synthesis with first row transition metal complexes. Chem. Rev. 119, 2752–2875 (2019).
Article CAS PubMed PubMed Central Google Scholar
Wang, G. et al. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem. Soc. Rev. 50, 4993–5061 (2021).
Article CAS PubMed Google Scholar
Zhang, S., Fan, Q., Xia, R. & Meyer, T. J. CO2 reduction: from homogeneous to heterogeneous electrocatalysis. Acc. Chem. Res. 53, 2–11 (2019).
Shi, J. et al. Enzymatic conversion of carbon dioxide. Chem. Soc. Rev. 44, 5981–6000 (2015).
Article CAS PubMed Google Scholar
Yishai, O., Lindner, S. N., Gonzalez de la Cruz, J., Tenenboim, H. & Bar-Even, A. The formate bio-economy. Curr. Opin. Chem. Biol. 35, 1–9 (2016).
Article CAS PubMed Google Scholar
Mellmann, D., Sponholz, P., Junge, H. & Beller, M. Formic acid as a hydrogen storage material - development of homogeneous catalysts for selective hydrogen release. Chem. Soc. Rev. 45, 3954–3988 (2016).
Article CAS PubMed Google Scholar
Bulushev, D. & Ross, J. R. H. Towards sustainable production of formic acid from biomass for getting hydrogen and fuels. Chem. Sus. Chem. 11, 821–836 (2018).
Reda, T., Plugge, C. M., Abram, N. J. & Hirst, J. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc. Natl Acad. Sci. USA 105, 10654–10658 (2008).
Article CAS PubMed PubMed Central Google Scholar
Stripp, S. T. et al. Second and outer coordination sphere effects in nitrogenase, hydrogenase, formate dehydrogenase, and CO dehydrogenase. Chem. Rev. 122, 11900–11973 (2022).
Schuchmann, K. & Müller, V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 12, 809–821 (2014).
Article CAS PubMed Google Scholar
Plugge, C. M., Zhang, W., Scholten, J. C. M. & Stams, A. J. M. Metabolic flexibility of sulfate-reducing bacteria. Front. Microbiol. 2, 81 (2011).
Article CAS PubMed PubMed Central Google Scholar
Sieber, J. R., Mcinerney, M. J. & Gunsalus, R. P. Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu Rev. Microbiol. 66, 429–452 (2012).
Article CAS PubMed Google Scholar
Niks, D. & Hille, R. Molybdenum‐ and tungsten‐containing formate dehydrogenases and formylmethanofuran dehydrogenases: structure, mechanism, and cofactor insertion. Protein Sci. 28, 111–122 (2019).
Article CAS PubMed Google Scholar
Oliveira, A. R. et al. Toward the mechanistic understanding of enzymatic CO2 reduction. ACS Catal. 10, 3844–3856 (2020).
Dietrich, H. M. et al. Membrane-anchored HDCR nanowires drive hydrogen-powered CO2 fixation. Nature 607, 823–830 (2022).
Article CAS PubMed Google Scholar
Grimaldi, S., Schoepp-Cothenet, B., Ceccaldi, P., Guigliarelli, B. & Magalon, A. The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. Biochim. Biophys. Acta, Bioenerg. 1827, 1048–1085 (2013).
Hille, R. Molybdenum and tungsten in biology. Trends Biochem. Sci. 27, 360–367 (2002).
Article CAS PubMed Google Scholar
Schwarz, F. M., Schuchmann, K. & Müller, V. Hydrogenation of CO2 at ambient pressure catalyzed by a highly active thermostable biocatalyst. Biotechnol. Biofuels 11, 237 (2018).
Article PubMed PubMed Central Google Scholar
da Silva, S. M., Pimentel, C., Valente, F. M. A. A., Rodrigues-Pousada, C. & Pereira, I. A. C. C. Tungsten and molybdenum regulation of formate dehydrogenase expression in Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 193, 2909–2916 (2011).
Article PubMed PubMed Central Google Scholar
da Silva, S. M. et al. Function of formate dehydrogenases in Desulfovibrio vulgaris Hildenborough energy metabolism. Microbiol. 159, 1760–1769 (2013).
Miller, M. et al. Interfacing formate dehydrogenase with metal oxides for the reversible electrocatalysis and solar‐driven reduction of carbon dioxide. Angew. Chem. Int. Ed. 58, 4601–4605 (2019).
Edwardes Moore, E. et al. A semi‐artificial photoelectrochemical tandem leaf witha CO2‐to‐formate efficiency approaching 1%. Angew. Chem. Int. Ed. 60, 26303–26307 (2021).
Szczesny, J. et al. Electroenzymatic CO2 fixation using redox polymer/enzyme-modified gas diffusion electrodes. ACS Energy Lett. 5, 321–327 (2020).
Alvarez-Malmagro, J. et al. Bioelectrocatalytic activity of W-formate dehydrogenase covalently immobilized on functionalized gold and graphite electrodes. ACS Appl. Mater. Interfaces 13, 11891–11900 (2021).
Article CAS PubMed PubMed Central Google Scholar
Antón-García, D. et al. Photoelectrochemical hybrid cell for unbiased CO2 reduction coupled to alcohol oxidation. Nat. Synth. 1, 77–86 (2022).
De Bok, F. A. M. M. et al. Two W-containing formate dehydrogenases (CO2-reductases) involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans. Eur. J. Biochem. 270, 2476–2485 (2003).
Schuchmann, K. & Müller, V. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342, 1382–1385 (2013).
Article CAS PubMed Google Scholar
Raaijmakers, H. et al. Gene sequence and the 1.8 A crystal structure gene sequence and the 1.8 A of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas. Structure 10, 1261–1272 (2002).
Article CAS PubMed Google Scholar
Oliveira, A. R. et al. Spectroscopic and structural characterization of reduced Desulfovibrio vulgaris Hildenborough W-FdhAB reveals stable metal coordination during catalysis. ACS Chem. Biol. 17, 1901–1909 (2022).
Article CAS PubMed PubMed Central Google Scholar
Vilela-Alves, G. et al. Tracking W-formate dehydrogenase structural changes during catalysis and enzyme reoxidation. Int. J. Mol. Sci. 24, 476 (2023).
Grimaldi, S., Biaso, F., Burlat, B. & Guigliarelli, B. in Molybdenum and Tungsten Enzymes: Spectroscopic and Theoretical Investigations (eds Hille, R. et al.) 68–120 (The Royal Society of Chemistry, 2016).
Al-Attar, S. et al. Gating of substrate access and long-range proton transfer in Escherichia coli nitrate reductase A: the essential role of a remote glutamate residue. ACS Catal. 11, 14303–14318 (2021).
Iwaoka, M. & Isozumi, N. Hypervalent nonbonded interactions of a divalent sulfur atom. Implications in protein architecture and the functions. Molecules 2, 7266–7283 (2012).
Léger, C. & Bertrand, P. Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem. Rev. 108, 2379–2438 (2008).
Chiu, J. & Hogg, X. P. J. Allosteric disulfides: sophisticated molecular structures enabling flexible protein regulation. J. Biol. Chem. 294, 2949–5908 (2019).
Article CAS PubMed PubMed Central Google Scholar
Hartmann, T. & Leimkühler, S. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate. FEBS J. 280, 6083–6096 (2013).
Article CAS PubMed Google Scholar
Yu, X., Niks, D., Mulchandani, A. & Hille, R. Efficient reduction of CO2 by the molybdenum-containing formate dehydrogenase from Cupriavidus necator (Ralstonia eutropha). J. Biol. Chem. 292, 16872–16879 (2017).
Article CAS PubMed PubMed Central Google Scholar
Graham, J. E. et al. How a formate dehydrogenase responds to oxygen: unexpected O2 insensitivity of an enzyme harboring tungstate, selenocysteine, and [4Fe-4S] clusters. ACS Catal. 12, 10449–10471 (2022).
Hogg, P. J. Disulfide bonds as switches for protein function. Trends Biochem. Sci. 28, 210–214 (2003).
Article CAS PubMed Google Scholar
Wensien, M. et al. A lysine-cysteine redox switch with an NOS bridge regulates enzyme function. Nature 593, 460–464 (2021).
Article CAS PubMed Google Scholar
Rabe von Pappenheim, F. et al. Widespread occurrence of covalent lysine–cysteine redox switches in proteins. Nat. Chem. Biol. 18, 368–375 (2022).
Article CAS PubMed PubMed Central Google Scholar
Schrapers, P. et al. Sulfido and cysteine ligation changes
Comments (0)