A DNA phosphorothioation pathway via adenylated intermediate modulates Tdp machinery

Wang, L., Jiang, S., Deng, Z., Dedon, P. C. & Chen, S. DNA phosphorothioate modification—a new multi-functional epigenetic system in bacteria. FEMS Microbiol. Rev. 43, 109–122 (2018).

Article  PubMed Central  Google Scholar 

Wang, L. et al. DNA phosphorothioation is widespread and quantized in bacterial genomes. Proc. Natl Acad. Sci. USA 108, 2963–2968 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, L. et al. Phosphorothioation of DNA in bacteria by dnd genes. Nat. Chem. Biol. 3, 709–710 (2007).

Article  CAS  PubMed  Google Scholar 

Wang, L., Tang, Y., Deng, Z. & Chen, S. DNA phosphorothioate modification systems and associated phage defense systems. Annu. Rev. Microbiol. 78, 447–462 (2024).

Article  CAS  PubMed  Google Scholar 

Jiang, S. et al. A widespread phage-encoded kinase enables evasion of multiple host antiphage defence systems. Nat. Microbiol. 9, 3226–3239 (2024).

Article  CAS  PubMed  Google Scholar 

Mueller, E. G. Trafficking in persulfides: delivering sulfur in biosynthetic pathways. Nat. Chem. Biol. 2, 185–194 (2006).

Article  CAS  PubMed  Google Scholar 

You, D., Wang, L., Yao, F., Zhou, X. & Deng, Z. A novel DNA modification by sulfur: DndA is a NifS-like cysteine desulfurase capable of assembling DndC as an iron–sulfur cluster protein in Streptomyces lividans. Biochemistry 46, 6126–6133 (2007).

Article  CAS  PubMed  Google Scholar 

Rakesh, S., Aravind, L. & Krishnan, A. Reappraisal of the DNA phosphorothioate modification machinery: uncovering neglected functional modalities and identification of new counter-invader defense systems. Nucleic Acids Res. 52, 1005–1026 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pu, T. et al. An in vitro DNA phosphorothioate modification reaction. Mol. Microbiol. 113, 452–463 (2020).

Article  CAS  PubMed  Google Scholar 

Hu, W. et al. Structural insights into DndE from Escherichia coli B7A involved in DNA phosphorothioation modification. Cell Res. 22, 1203–1206 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xia, S. et al. Tight control of genomic phosphorothioate modification by the ATP-modulated autoregulation and reusability of DndB. Mol. Microbiol. 111, 938–950 (2019).

Article  CAS  PubMed  Google Scholar 

Wu, X. et al. Epigenetic competition reveals density-dependent regulation and target site plasticity of phosphorothioate epigenetics in bacteria. Proc. Natl Acad. Sci. USA 117, 14322–14330 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, C. et al. Convergence of DNA methylation and phosphorothioation epigenetics in bacterial genomes. Proc. Natl Acad. Sci. USA 114, 4501–4506 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao, B. et al. Genomic mapping of phosphorothioates reveals partial modification of short consensus sequences. Nat. Commun. 5, 3951 (2014).

Article  CAS  PubMed  Google Scholar 

Tong, T. et al. Occurrence, evolution, and functions of DNA phosphorothioate epigenetics in bacteria. Proc. Natl Acad. Sci. USA 115, E2988–E2996 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiong, L. et al. A new type of DNA phosphorothioation-based antiviral system in archaea. Nat. Commun. 10, 1688 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Wei, Y. et al. Single-molecule optical mapping of the distribution of DNA phosphorothioate epigenetics. Nucleic Acids Res. 49, 3672–3680 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, D. et al. The functional coupling between restriction and DNA phosphorothioate modification systems underlying the DndFGH restriction complex. Nat. Catal. 5, 1131–1144 (2022).

Article  CAS  Google Scholar 

Xiong, X. et al. SspABCD–SspE is a phosphorothioation-sensing bacterial defence system with broad anti-phage activities. Nat. Microbiol. 5, 917–928 (2020).

Article  CAS  PubMed  Google Scholar 

Gao, H. et al. Nicking mechanism underlying the DNA phosphorothioate-sensing antiphage defense by SspE. Nat. Commun. 13, 6773 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faou, A., Rajagopal, B. S., Daniels, L. & Fauque, G. Thiosulfate, polythionates and elemental sulfur assimilation and reduction in the bacterial world. FEMS Microbiol. Lett. 75, 351–382 (1990).

Article  Google Scholar 

Blackwood, J. K. et al. Structural and functional insights into DNA-end processing by the archaeal HerA helicase–NurA nuclease complex. Nucleic Acids Res. 40, 3183–3196 (2012).

Article  CAS  PubMed  Google Scholar 

Pu, T. et al. Phosphorothioated DNA is shielded from oxidative damage. Appl. Environ. Microbiol. 85, e00104–e00119 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palenchar, P. M. Evidence that ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate. J. Biol. Chem. 275, 8283–8286 (2000).

Article  CAS  PubMed  Google Scholar 

Numata, T., Ikeuchi, Y., Fukai, S., Suzuki, T. & Nureki, O. Snapshots of tRNA sulphuration via an adenylated intermediate. Nature 442, 419–424 (2006).

Article  CAS  PubMed  Google Scholar 

Bouvier, D. et al. TtcA a new tRNA-thioltransferase with an Fe-S cluster. Nucleic Acids Res. 42, 7960–7970 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kambampati, R. & Lauhon, C. T. Evidence for the transfer of sulfane sulfur from IscS to ThiI during the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. J. Biol. Chem. 275, 10727–10730 (2000).

Article  CAS  PubMed  Google Scholar 

You, D., Xu, T., Yao, F., Zhou, X. & Deng, Z. Direct evidence that ThiI is an ATP pyrophosphatase for the adenylation of uridine in 4-thiouridine biosynthesis. ChemBioChem 9, 1879–1882 (2008).

Article  CAS  PubMed  Google Scholar 

Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garb, J. et al. Multiple phage resistance systems inhibit infection via SIR2-dependent NAD+ depletion. Nat. Microbiol. 7, 1849–1856 (2022).

Article  CAS  PubMed  Google Scholar 

Liu, G. et al. Structural basis for the recognition of sulfur in phosphorothioated DNA. Nat. Commun. 9, 4689 (2018).

Article  PubMed  PubMed Central 

Comments (0)

No login
gif