PROTAR Vaccine 2.0 generates influenza vaccines by degrading multiple viral proteins

Wei, C. J. et al. Next-generation influenza vaccines: opportunities and challenges. Nat. Rev. Drug Discov. 19, 239–252 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uyeki, T. M., Hui, D. S., Zambon, M., Wentworth, D. E. & Monto, A. S. Influenza. Lancet 400, 693–706 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, C., Horby, P. W., Hayden, F. G. & Gao, G. F. A novel coronavirus outbreak of global health concern. Lancet 395, 470–473 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamayoshi, S. & Kawaoka, Y. Current and future influenza vaccines. Nat. Med. 25, 212–220 (2019).

Article  CAS  PubMed  Google Scholar 

Gouma, S., Anderson, E. M. & Hensley, S. E. Challenges of making effective influenza vaccines. Annu. Rev. Virol. 7, 495–512 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bekes, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Si, L. et al. Generation of a live attenuated influenza A vaccine by proteolysis targeting. Nat. Biotechnol. 40, 1370–1377 (2022).

Article  CAS  PubMed  Google Scholar 

Hon, W. C. et al. Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature 417, 975–978 (2002).

Article  CAS  PubMed  Google Scholar 

Jaakkola, P. et al. Targeting of HIF-α to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

Article  CAS  PubMed  Google Scholar 

Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

Article  CAS  PubMed  Google Scholar 

Yaron, A. et al. Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396, 590–594 (1998).

Article  CAS  PubMed  Google Scholar 

Yaron, A. et al. Inhibition of NF-κB cellular function via specific targeting of the IκB-ubiquitin ligase. EMBO J. 16, 6486–6494 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sakamoto, K. M. et al. PROTACs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, G. et al. Structure of a β-TrCP1–Skp1–β-catenin complex: destruction motif binding and lysine specificity of the SCFβ-TrCP1 ubiquitin ligase. Mol. Cell 11, 1445–1456 (2003).

Article  CAS  PubMed  Google Scholar 

Jagger, B. W. et al. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science 337, 199–204 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muramoto, Y., Noda, T., Kawakami, E., Akkina, R. & Kawaoka, Y. Identification of novel influenza A virus proteins translated from PA mRNA. J. Virol. 87, 2455–2462 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mor, A. et al. Influenza virus mRNA trafficking through host nuclear speckles. Nat. Microbiol. 1, 16069 (2016).

Article  CAS  PubMed  Google Scholar 

Huang, X. et al. An NS-segment exonic splicing enhancer regulates influenza A virus replication in mammalian cells. Nat. Commun. 8, 14751 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gossage, L., Eisen, T. & Maher, E. R. VHL, the story of a tumour suppressor gene. Nat. Rev. Cancer 15, 55–64 (2015).

Article  CAS  PubMed  Google Scholar 

Hu, W. et al. A Vero-cell-adapted vaccine donor strain of influenza A virus generated by serial passages. Vaccine 33, 374–381 (2015).

Article  CAS  PubMed  Google Scholar 

Iuliano, A. D. et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 391, 1285–1300 (2018).

Article  PubMed  Google Scholar 

Smith, A. et al. A live attenuated influenza vaccine elicits enhanced heterologous protection when the internal genes of the vaccine are matched to those of the challenge virus. J. Virol. 94, e01065–19 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Broadbent, A. J., Santos, C. P., Godbout, R. A. & Subbarao, K. The temperature-sensitive and attenuation phenotypes conferred by mutations in the influenza virus PB2, PB1, and NP genes are influenced by the species of origin of the PB2 gene in reassortant viruses derived from influenza A/California/07/2009 and A/WSN/33 viruses. J. Virol. 88, 12339–12347 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Blanco-Lobo, P., Nogales, A., Rodriguez, L. & Martinez-Sobrido, L. Novel approaches for the development of live attenuated influenza vaccines. Viruses 11, 190 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du, Y. et al. Genome-wide identification of interferon-sensitive mutations enables influenza vaccine design. Science 359, 290–296 (2018).

Article  CAS  PubMed  Google Scholar 

Si, L. et al. Generation of influenza A viruses as live but replication-incompetent virus vaccines. Science 354, 1170–1173 (2016).

Article  CAS  PubMed  Google Scholar 

Coleman, J. R. et al. Virus attenuation by genome-scale changes in codon pair bias. Science 320, 1784–1787 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mueller, S. et al. Live attenuated influenza virus vaccines by computer-aided rational design. Nat. Biotechnol. 28, 723–726 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stech, J., Garn, H., Wegmann, M., Wagner, R. & Klenk, H. D. A new approach to an influenza live vaccine: modification of the cleavage site of hemagglutinin. Nat. Med. 11, 683–689 (2005).

Article  CAS  PubMed  Google Scholar 

Wang, L. et al. Generation of a live attenuated influenza vaccine that elicits broad protection in mice and ferrets. Cell Host Microbe 21, 334–343 (2017).

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif