Robbins TW, Vaghi MM, Banca P (2019) Obsessive-compulsive disorder: puzzles and prospects. Neuron 102:27–47
WHO | World Health Organization. WHO [Internet]. 2018 [cited 2019 Jan 22]; https://www.who.int/gho/mortality_burden_disease/en/
American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders. American Psychiatric Association https://psychiatryonline.org/doi/book/10.1176/appi.books.9780890425596
Benzina N, Mallet L, Burguière E, N’Diaye K, Pelissolo A (2016) Cognitive dysfunction in obsessive-compulsive disorder. Curr Psychiatry Rep 18(9):80. https://doi.org/10.1007/s11920-016-0720-3
Geller DA, McGuire JF, Orr SP, Pine DS, Britton JC, Small BJ et al (2017) Fear conditioning and extinction in pediatric obsessive-compulsive disorder. Ann Clin Psychiatry 29(1):17–26 http://www.ncbi.nlm.nih.gov/pubmed/28207912
PubMed PubMed Central Google Scholar
Palit A, Roy PK, Saha PK (2022) Role of prospective memory in obsessive compulsive disorder. Indian J Psychol Med 44(6):586–591
Article PubMed PubMed Central Google Scholar
Moreno M, Flores P (2012) Schedule-induced polydipsia as a model of compulsive behavior: neuropharmacological and neuroendocrine bases. Psychopharmacology 219(2):647–659. https://doi.org/10.1007/s00213-011-2570-3
Martín-González E, Olmedo-Córdoba M, Flores P, Moreno-Montoya M (2022) Differential neurobiological markers in phenotype-stratified rats modeling high or low vulnerability to compulsive behavior: a narrative review. Curr Neuropharmacol 21(9):1924–1933. https://pubmed.ncbi.nlm.nih.gov/36411566/
Hawken ER, Beninger RJ (2014) The amphetamine sensitization model of schizophrenia symptoms and its effect on schedule-induced polydipsia in the rat. Psychopharmacology 231(9):2001–2008. https://doi.org/10.1007/s00213-013-3345-9
Ford MM (2014) Applications of schedule-induced polydipsia in rodents for the study of an excessive ethanol intake phenotype. Alcohol 48(3):265–276 http://www.ncbi.nlm.nih.gov/pubmed/24680665
Article PubMed PubMed Central Google Scholar
Fouyssac M, Puaud M, Ducret E, Marti-Prats L, Vanhille N, Ansquer S et al (2021) Environment-dependent behavioral traits and experiential factors shape addiction vulnerability. Eur J Neurosci 53(6):1794–1808. https://pubmed.ncbi.nlm.nih.gov/33332672/
Woods A, Smith C, Szewczak M, Dunn RW, Cornfeldt M, Corbett R (1993) Selective serotonin re- uptake inhibitors decrease schedule-induced polydipsia in rats: a potential model for obsessive compulsive disorder. Psychopharmacology 112(2–3):195–198 http://www.ncbi.nlm.nih.gov/pubmed/7871019
Falk J (1961) Production of polydipsia in normal rats by an intermittent food schedule. Science 133(3447):195–196 http://www.ncbi.nlm.nih.gov/pubmed/13698026
Navarro SV, Alvarez R, Colomina MT, Sanchez-Santed F, Flores P, Moreno M (2017) Behavioral biomarkers of schizophrenia in high drinker rats: a potential endophenotype of compulsive neuropsychiatric disorders. Schizophr Bull 43(4):778–787
Merchán A, Sánchez-Kuhn A, Prados-Pardo A, Gago B, Sánchez-Santed F, Moreno M et al (2019) Behavioral and biological markers for predicting compulsive-like drinking in schedule- induced polydipsia. Prog Neuropsychopharmacol Biol Psychiatry 93:149–160. https://pubmed.ncbi.nlm.nih.gov/30940483/
Moreno M, Gutiérrez-Ferre VE, Ruedas L, Campa L, Suñol C, Flores P (2012) Poor inhibitory control and neurochemical differences in high compulsive drinker rats selected by schedule-induced polydipsia. Psychopharmacology 219(2):661–672. https://doi.org/10.1007/s00213-011-2575-y
Prados-Pardo Á, Martín-González E, Mora S, Merchán A, Flores P, Moreno M (2019) Increased fear memory and glutamatergic modulation in compulsive drinker rats selected by schedule-induced polydipsia. Front Behav Neurosci 13:100. https://pubmed.ncbi.nlm.nih.gov/31133835/
Article PubMed PubMed Central Google Scholar
Martín-González E, Olmedo-Córdoba M, Prados-Pardo Á, Cruz-Garzón DJ, Flores P, Mora S et al (2022) Socioemotional deficit and HPA axis time response in high compulsive rats selected by schedule-induced polydipsia. Horm Behav 142:105170. https://pubmed.ncbi.nlm.nih.gov/35367739/
Fineberg NA, Chamberlain SR, Goudriaan AE, Stein DJ, Vanderschuren LJMJ, Gillan CM et al (2014) New developments in human neurocognition: clinical, genetic, and brain imaging correlates of impulsivity and compulsivity. CNS Spectr 19(01):69–89. https://www.cambridge.org/core/product/identifier/S1092852913000801/type/journal_article
Article PubMed PubMed Central Google Scholar
Marinova Z, Chuang DM, Fineberg N (2017) Glutamate-modulating drugs as a potential therapeutic strategy in obsessive-compulsive disorder. Curr Neuropharmacol 15(7):977–995 http://www.ncbi.nlm.nih.gov/pubmed/28322166
Article PubMed PubMed Central Google Scholar
Taylor S (2013) Molecular genetics of obsessive–compulsive disorder: a comprehensive meta- analysis of genetic association studies. Mol Psychiatry 18(7):799–805 http://www.nature.com/articles/mp201276
Rajendram R, Kronenberg S, Burton CL, Arnold PD (2017) Glutamate genetics in obsessive-compulsive disorder: a review. J Can Acad Child Adolesc Psychiatry 26(3):205–213. https://pubmed.ncbi.nlm.nih.gov/29056983/
PubMed PubMed Central Google Scholar
Katerberg H, Lochner C, Cath DC, De Jonge P, Bochdanovits Z, Moolman-Smook JC et al (2009) The role of the brain-derived neurotrophic factor (BDNF) val66met variant in the phenotypic expression of obsessive-compulsive disorder (OCD). Am J Med Genet B Neuropsychiatr Genet 150B(8):1050–1062. https://pubmed.ncbi.nlm.nih.gov/19219856/
Taj MJRJ, Ganesh S, Shukla T, Deolankar S, Nadella RK, Sen S et al (2018) BDNF gene and obsessive compulsive disorder risk, symptom dimensions and treatment response. Asian J Psychiatr 38:65–69. https://pubmed.ncbi.nlm.nih.gov/29079096/
Şimşek Ş, Gençoǧlan S, Yüksel T, Kaplan I, Alaca R (2016) Cortisol and brain-derived neurotrophic factor levels prior to treatment in children with obsessive-compulsive disorder. J Clin Psychiatry 77(7):e855–e859. https://pubmed.ncbi.nlm.nih.gov/27314567/
Wang Y, Mathews CA, Li Y, Lin Z, Xiao Z (2011) Brain-derived neurotrophic factor (BDNF) plasma levels in drug-naïve OCD patients are lower than those in healthy people, but are not lower than those in drug-treated OCD patients. J Affect Disord 133(1–2):305–310. https://pubmed.ncbi.nlm.nih.gov/21616543/
Mora S, Merchán A, Vilchez O, Aznar S, Klein AB, Ultved L et al (2018) Reduced cortical serotonin 5-HT2A receptor binding and glutamate activity in high compulsive drinker rats. Neuropharmacology 143:10. https://www.sciencedirect.com/science/article/pii/S0028390818306270?via%3Dihub
Navarro SV, Gutiérrez-ferre V, Flores P, Moreno M (2015) Activation of serotonin 5-HT2 A receptors inhibits high compulsive drinking on schedule-induced polydipsia. Psychopharmacology 232:683–697
Mora S, Merchán A, Aznar S, Flores P, Moreno M (2020) Increased amygdala and decreased hippocampus volume after schedule-induced polydipsia in high drinker compulsive rats. Behav Brain Res 390:112592. https://pubmed.ncbi.nlm.nih.gov/32417273/
Pittenger C (2013) Disorders of memory and plasticity in psychiatric disease. Dialogues Clin Neurosci 15(4):455–463. https://pubmed.ncbi.nlm.nih.gov/24459412/
Article PubMed PubMed Central Google Scholar
de Bruin JP, Sànchez-Santed F, Heinsbroek RP, Donker A, Postmes P (1994) A behavioural analysis of rats with damage to the medial prefrontal cortex using the Morris water maze: evidence for behavioural flexibility, but not for impaired spatial navigation. Brain Res 652(2):323–333. https://doi.org/10.1016/0006-8993(94)90243-7
Fole A, Miguéns M, Morales L, González-Martín C, Ambrosio E, Del Olmo N (2017) Lewis and Fischer 344 rats as a model for genetic differences in spatial learning and memory: cocaine effects. Prog Neuropsychopharmacol Biol Psychiatry 76:49–57. https://doi.org/10.1016/j.pnpbp.2017.02.024
Cohen SJ, Stackman RW (2015) Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behav Brain Res 285:105–117. https://pubmed.ncbi.nlm.nih.gov/25169255/
Statistical power analysis for the behavioral sciences - Jacob Cohen - Google Libros https://books.google.es/books?hl=es&lr=&id=rEe0BQAAQBAJ&oi=fnd&pg=PP1&ots=sw_ZHtUPs9&sig=FB7Ht7UeZXro1MzjNUgzZ6Qu0K8&redir_esc=y#v=onepage&q&f=false
Moreno-Montoya M, Olmedo-Córdoba M, Martín-González E (2022) Negative valence system as a relevant domain in compulsivity: review in a preclinical model of compulsivity. Emerg Top Life Sci 6(5):491–500. https://pubmed.ncbi.nlm.nih.gov/36377776/
Fyer AJ, Schneier FR, Simpson HB, Choo TH, Tacopina S, Kimeldorf MB et al (2020) Heterogeneity in fear processing across and within anxiety, eating, and compulsive disorders. J Affect Disord 275:329–338. https://pubmed.ncbi.nlm.nih.gov/32734926/
Article PubMed PubMed Central Google Scholar
Andersen SL, Greene-Colozzi EA, Sonntag KC (2010) A novel, multiple symptom model of obsessive-compulsive-like behaviors in animals. Biol Psychiatry 68(8):741–747. https://pubmed.ncbi.nlm.nih.gov/20619828/
Comments (0)