Reduced Expression of the Htr2a, Grin1, and Bdnf Genes and Cognitive Inflexibility in a Model of High Compulsive Rats

Robbins TW, Vaghi MM, Banca P (2019) Obsessive-compulsive disorder: puzzles and prospects. Neuron 102:27–47

Article  PubMed  Google Scholar 

WHO | World Health Organization. WHO [Internet]. 2018 [cited 2019 Jan 22]; https://www.who.int/gho/mortality_burden_disease/en/

American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders. American Psychiatric Association https://psychiatryonline.org/doi/book/10.1176/appi.books.9780890425596

Book  Google Scholar 

Benzina N, Mallet L, Burguière E, N’Diaye K, Pelissolo A (2016) Cognitive dysfunction in obsessive-compulsive disorder. Curr Psychiatry Rep 18(9):80. https://doi.org/10.1007/s11920-016-0720-3

Article  PubMed  Google Scholar 

Geller DA, McGuire JF, Orr SP, Pine DS, Britton JC, Small BJ et al (2017) Fear conditioning and extinction in pediatric obsessive-compulsive disorder. Ann Clin Psychiatry 29(1):17–26 http://www.ncbi.nlm.nih.gov/pubmed/28207912

PubMed  PubMed Central  Google Scholar 

Palit A, Roy PK, Saha PK (2022) Role of prospective memory in obsessive compulsive disorder. Indian J Psychol Med 44(6):586–591

Article  PubMed  PubMed Central  Google Scholar 

Moreno M, Flores P (2012) Schedule-induced polydipsia as a model of compulsive behavior: neuropharmacological and neuroendocrine bases. Psychopharmacology 219(2):647–659. https://doi.org/10.1007/s00213-011-2570-3

Article  PubMed  Google Scholar 

Martín-González E, Olmedo-Córdoba M, Flores P, Moreno-Montoya M (2022) Differential neurobiological markers in phenotype-stratified rats modeling high or low vulnerability to compulsive behavior: a narrative review. Curr Neuropharmacol 21(9):1924–1933. https://pubmed.ncbi.nlm.nih.gov/36411566/

Article  Google Scholar 

Hawken ER, Beninger RJ (2014) The amphetamine sensitization model of schizophrenia symptoms and its effect on schedule-induced polydipsia in the rat. Psychopharmacology 231(9):2001–2008. https://doi.org/10.1007/s00213-013-3345-9

Article  PubMed  Google Scholar 

Ford MM (2014) Applications of schedule-induced polydipsia in rodents for the study of an excessive ethanol intake phenotype. Alcohol 48(3):265–276 http://www.ncbi.nlm.nih.gov/pubmed/24680665

Article  PubMed  PubMed Central  Google Scholar 

Fouyssac M, Puaud M, Ducret E, Marti-Prats L, Vanhille N, Ansquer S et al (2021) Environment-dependent behavioral traits and experiential factors shape addiction vulnerability. Eur J Neurosci 53(6):1794–1808. https://pubmed.ncbi.nlm.nih.gov/33332672/

Article  PubMed  Google Scholar 

Woods A, Smith C, Szewczak M, Dunn RW, Cornfeldt M, Corbett R (1993) Selective serotonin re- uptake inhibitors decrease schedule-induced polydipsia in rats: a potential model for obsessive compulsive disorder. Psychopharmacology 112(2–3):195–198 http://www.ncbi.nlm.nih.gov/pubmed/7871019

Article  PubMed  Google Scholar 

Falk J (1961) Production of polydipsia in normal rats by an intermittent food schedule. Science 133(3447):195–196 http://www.ncbi.nlm.nih.gov/pubmed/13698026

Article  PubMed  Google Scholar 

Navarro SV, Alvarez R, Colomina MT, Sanchez-Santed F, Flores P, Moreno M (2017) Behavioral biomarkers of schizophrenia in high drinker rats: a potential endophenotype of compulsive neuropsychiatric disorders. Schizophr Bull 43(4):778–787

Article  PubMed  Google Scholar 

Merchán A, Sánchez-Kuhn A, Prados-Pardo A, Gago B, Sánchez-Santed F, Moreno M et al (2019) Behavioral and biological markers for predicting compulsive-like drinking in schedule- induced polydipsia. Prog Neuropsychopharmacol Biol Psychiatry 93:149–160. https://pubmed.ncbi.nlm.nih.gov/30940483/

Article  PubMed  Google Scholar 

Moreno M, Gutiérrez-Ferre VE, Ruedas L, Campa L, Suñol C, Flores P (2012) Poor inhibitory control and neurochemical differences in high compulsive drinker rats selected by schedule-induced polydipsia. Psychopharmacology 219(2):661–672. https://doi.org/10.1007/s00213-011-2575-y

Article  PubMed  Google Scholar 

Prados-Pardo Á, Martín-González E, Mora S, Merchán A, Flores P, Moreno M (2019) Increased fear memory and glutamatergic modulation in compulsive drinker rats selected by schedule-induced polydipsia. Front Behav Neurosci 13:100. https://pubmed.ncbi.nlm.nih.gov/31133835/

Article  PubMed  PubMed Central  Google Scholar 

Martín-González E, Olmedo-Córdoba M, Prados-Pardo Á, Cruz-Garzón DJ, Flores P, Mora S et al (2022) Socioemotional deficit and HPA axis time response in high compulsive rats selected by schedule-induced polydipsia. Horm Behav 142:105170. https://pubmed.ncbi.nlm.nih.gov/35367739/

Article  PubMed  Google Scholar 

Fineberg NA, Chamberlain SR, Goudriaan AE, Stein DJ, Vanderschuren LJMJ, Gillan CM et al (2014) New developments in human neurocognition: clinical, genetic, and brain imaging correlates of impulsivity and compulsivity. CNS Spectr 19(01):69–89. https://www.cambridge.org/core/product/identifier/S1092852913000801/type/journal_article

Article  PubMed  PubMed Central  Google Scholar 

Marinova Z, Chuang DM, Fineberg N (2017) Glutamate-modulating drugs as a potential therapeutic strategy in obsessive-compulsive disorder. Curr Neuropharmacol 15(7):977–995 http://www.ncbi.nlm.nih.gov/pubmed/28322166

Article  PubMed  PubMed Central  Google Scholar 

Taylor S (2013) Molecular genetics of obsessive–compulsive disorder: a comprehensive meta- analysis of genetic association studies. Mol Psychiatry 18(7):799–805 http://www.nature.com/articles/mp201276

Article  PubMed  Google Scholar 

Rajendram R, Kronenberg S, Burton CL, Arnold PD (2017) Glutamate genetics in obsessive-compulsive disorder: a review. J Can Acad Child Adolesc Psychiatry 26(3):205–213. https://pubmed.ncbi.nlm.nih.gov/29056983/

PubMed  PubMed Central  Google Scholar 

Katerberg H, Lochner C, Cath DC, De Jonge P, Bochdanovits Z, Moolman-Smook JC et al (2009) The role of the brain-derived neurotrophic factor (BDNF) val66met variant in the phenotypic expression of obsessive-compulsive disorder (OCD). Am J Med Genet B Neuropsychiatr Genet 150B(8):1050–1062. https://pubmed.ncbi.nlm.nih.gov/19219856/

Article  PubMed  Google Scholar 

Taj MJRJ, Ganesh S, Shukla T, Deolankar S, Nadella RK, Sen S et al (2018) BDNF gene and obsessive compulsive disorder risk, symptom dimensions and treatment response. Asian J Psychiatr 38:65–69. https://pubmed.ncbi.nlm.nih.gov/29079096/

Article  Google Scholar 

Şimşek Ş, Gençoǧlan S, Yüksel T, Kaplan I, Alaca R (2016) Cortisol and brain-derived neurotrophic factor levels prior to treatment in children with obsessive-compulsive disorder. J Clin Psychiatry 77(7):e855–e859. https://pubmed.ncbi.nlm.nih.gov/27314567/

Article  PubMed  Google Scholar 

Wang Y, Mathews CA, Li Y, Lin Z, Xiao Z (2011) Brain-derived neurotrophic factor (BDNF) plasma levels in drug-naïve OCD patients are lower than those in healthy people, but are not lower than those in drug-treated OCD patients. J Affect Disord 133(1–2):305–310. https://pubmed.ncbi.nlm.nih.gov/21616543/

Article  PubMed  Google Scholar 

Mora S, Merchán A, Vilchez O, Aznar S, Klein AB, Ultved L et al (2018) Reduced cortical serotonin 5-HT2A receptor binding and glutamate activity in high compulsive drinker rats. Neuropharmacology 143:10. https://www.sciencedirect.com/science/article/pii/S0028390818306270?via%3Dihub

Article  PubMed  Google Scholar 

Navarro SV, Gutiérrez-ferre V, Flores P, Moreno M (2015) Activation of serotonin 5-HT2 A receptors inhibits high compulsive drinking on schedule-induced polydipsia. Psychopharmacology 232:683–697

Article  PubMed  Google Scholar 

Mora S, Merchán A, Aznar S, Flores P, Moreno M (2020) Increased amygdala and decreased hippocampus volume after schedule-induced polydipsia in high drinker compulsive rats. Behav Brain Res 390:112592. https://pubmed.ncbi.nlm.nih.gov/32417273/

Article  PubMed  Google Scholar 

Pittenger C (2013) Disorders of memory and plasticity in psychiatric disease. Dialogues Clin Neurosci 15(4):455–463. https://pubmed.ncbi.nlm.nih.gov/24459412/

Article  PubMed  PubMed Central  Google Scholar 

de Bruin JP, Sànchez-Santed F, Heinsbroek RP, Donker A, Postmes P (1994) A behavioural analysis of rats with damage to the medial prefrontal cortex using the Morris water maze: evidence for behavioural flexibility, but not for impaired spatial navigation. Brain Res 652(2):323–333. https://doi.org/10.1016/0006-8993(94)90243-7

Article  PubMed  Google Scholar 

Fole A, Miguéns M, Morales L, González-Martín C, Ambrosio E, Del Olmo N (2017) Lewis and Fischer 344 rats as a model for genetic differences in spatial learning and memory: cocaine effects. Prog Neuropsychopharmacol Biol Psychiatry 76:49–57. https://doi.org/10.1016/j.pnpbp.2017.02.024

Article  PubMed  Google Scholar 

Cohen SJ, Stackman RW (2015) Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behav Brain Res 285:105–117. https://pubmed.ncbi.nlm.nih.gov/25169255/

Article  PubMed  Google Scholar 

Statistical power analysis for the behavioral sciences - Jacob Cohen - Google Libros https://books.google.es/books?hl=es&lr=&id=rEe0BQAAQBAJ&oi=fnd&pg=PP1&ots=sw_ZHtUPs9&sig=FB7Ht7UeZXro1MzjNUgzZ6Qu0K8&redir_esc=y#v=onepage&q&f=false

Moreno-Montoya M, Olmedo-Córdoba M, Martín-González E (2022) Negative valence system as a relevant domain in compulsivity: review in a preclinical model of compulsivity. Emerg Top Life Sci 6(5):491–500. https://pubmed.ncbi.nlm.nih.gov/36377776/

Article  PubMed  Google Scholar 

Fyer AJ, Schneier FR, Simpson HB, Choo TH, Tacopina S, Kimeldorf MB et al (2020) Heterogeneity in fear processing across and within anxiety, eating, and compulsive disorders. J Affect Disord 275:329–338. https://pubmed.ncbi.nlm.nih.gov/32734926/

Article  PubMed  PubMed Central  Google Scholar 

Andersen SL, Greene-Colozzi EA, Sonntag KC (2010) A novel, multiple symptom model of obsessive-compulsive-like behaviors in animals. Biol Psychiatry 68(8):741–747. https://pubmed.ncbi.nlm.nih.gov/20619828/

Article 

Comments (0)

No login
gif