Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).
Article PubMed PubMed Central Google Scholar
Chong, S. et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361, eaar2555 (2018).
Article PubMed PubMed Central Google Scholar
Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 108, 4334–4339 (2011).
Article CAS PubMed PubMed Central Google Scholar
Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).
Article CAS PubMed PubMed Central Google Scholar
Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).
Article CAS PubMed PubMed Central Google Scholar
Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).
Article CAS PubMed PubMed Central Google Scholar
Altmeyer, M. et al. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat. Commun. 6, 8088 (2015).
Article CAS PubMed Google Scholar
Oshidari, R. et al. DNA repair by Rad52 liquid droplets. Nat. Commun. 11, 695 (2020).
Article CAS PubMed PubMed Central Google Scholar
Guillén-Boixet, J. et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346–361 (2020).
Article PubMed PubMed Central Google Scholar
Sanders, D. W. et al. Competing protein–RNA interaction networks control multiphase intracellular organization. Cell 181, 306–324 (2020).
Article CAS PubMed PubMed Central Google Scholar
Yang, P. et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 181, 325–345 (2020).
Article CAS PubMed PubMed Central Google Scholar
Boronenkov, I. V., Loijens, J. C., Umeda, M. & Anderson, R. A. Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol. Biol. Cell 9, 3547–3560 (1998).
Article CAS PubMed PubMed Central Google Scholar
Payrastre, B. et al. A differential location of phosphoinositide kinases, diacylglycerol kinase, and phospholipase C in the nuclear matrix. J. Biol. Chem. 267, 5078–5084 (1992).
Article CAS PubMed Google Scholar
Choi, B. H., Chen, Y. & Dai, W. Chromatin PTEN is involved in DNA damage response partly through regulating Rad52 sumoylation. Cell Cycle 12, 3442–3447 (2013).
Article CAS PubMed PubMed Central Google Scholar
Steinbach, N. et al. PTEN interacts with the transcription machinery on chromatin and regulates RNA polymerase II-mediated transcription. Nucleic Acids Res. 47, 5573–5586 (2019).
Article CAS PubMed PubMed Central Google Scholar
Karlsson, T., Altankhuyag, A., Dobrovolska, O., Turcu, D. C. & Lewis, A. E. A polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction. Biochem. J. 473, 2033–2047 (2016).
Article CAS PubMed Google Scholar
Davis, W. J., Lehmann, P. Z. & Li, W. Nuclear PI3K signaling in cell growth and tumorigenesis. Front. Cell Dev. Biol. 3, 24 (2015).
Article PubMed PubMed Central Google Scholar
Albi, E., Mersel, M., Leray, C., Tomassoni, M. L. & Viola-Magni, M. P. Rat liver chromatin phospholipids. Lipids 29, 715–719 (1994).
Article CAS PubMed Google Scholar
Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).
Article CAS PubMed Google Scholar
Johansson, H. O., Karlström, G., Tjerneld, F. & Haynes, C. A. Driving forces for phase separation and partitioning in aqueous two-phase systems. J. Chromatogr. B Biomed. Sci. Appl. 711, 3–17 (1998).
Article CAS PubMed Google Scholar
Klein, I. A. et al. Partitioning of cancer therapeutics in nuclear condensates. Science 368, 1386 (2020).
Article CAS PubMed PubMed Central Google Scholar
Wollny, D. et al. Characterization of RNA content in individual phase-separated coacervate microdroplets. Nat. Commun. 13, 2626 (2022).
Article CAS PubMed PubMed Central Google Scholar
Carlson, C. R. et al. Phosphoregulation of phase separation by the SARS-CoV-2 N protein suggests a biophysical basis for its dual functions. Mol. Cell 80, 1092–1103 (2020).
Article CAS PubMed PubMed Central Google Scholar
Perdikari, T. M. et al. SARS-CoV-2 nucleocapsid protein phase-separates with RNA and with human hnRNPs. EMBO J. 39, e106478 (2020).
Article CAS PubMed PubMed Central Google Scholar
Iserman, C. et al. Genomic RNA elements drive phase separation of the SARS-CoV-2 nucleocapsid. Mol. Cell 80, 1078–1091 (2020).
Article CAS PubMed PubMed Central Google Scholar
Cubuk, J. et al. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat. Commun. 12, 1936 (2021).
Article CAS PubMed PubMed Central Google Scholar
Lu, S. et al. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nat. Commun. 12, 502 (2021).
Article CAS PubMed PubMed Central Google Scholar
Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855 (2018).
Article CAS PubMed Google Scholar
Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543–548 (2019).
Article CAS PubMed PubMed Central Google Scholar
Chong, P. A., Vernon, R. M. & Forman-Kay, J. D. RGG/RG motif regions in RNA binding and phase separation. J. Mol. Biol. 430, 4650–4665 (2018).
Article CAS PubMed Google Scholar
Henninger, J. E. et al. RNA-mediated feedback control of transcriptional condensates. Cell 184, 207–225 (2021).
Article CAS PubMed Google Scholar
Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).
Article CAS PubMed PubMed Central Google Scholar
Weaver, R. & Riley, R. J. Identification and reduction of ion suppression effects on pharmacokinetic parameters by polyethylene glycol 400. Rapid Commun. Mass Spectrom. 20, 2559–2564 (2006).
Article CAS PubMed Google Scholar
Wang, Z., Zhang, G. & Zhang, H. Protocol for analyzing protein liquid–liquid phase separation. Biophys. Rep. 5, 1–9 (2019).
Barupal, D. K. & Fiehn, O. Chemical similarity enrichment analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets. Sci. Rep. 7, 14567 (2017).
Article PubMed PubMed Central Google Scholar
Cheung, H. Y. F. et al. Targeted phosphoinositides analysis using high-performance ion chromatography-coupled selected reaction monitoring mass spectrometry. J. Proteome Res. 20, 3114–3123 (2021).
Comments (0)