Micropolarity governs the structural organization of biomolecular condensates

Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

Article  CAS  PubMed  Google Scholar 

Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

Article  CAS  PubMed  Google Scholar 

Gomes, E. & Shorter, J. The molecular language of membraneless organelles. J. Biol. Chem. 294, 7115–7127 (2019).

Article  CAS  PubMed  Google Scholar 

Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

Article  PubMed  Google Scholar 

Dogra, P., Joshi, A., Majumdar, A. & Mukhopadhyay, S. Intermolecular charge-transfer modulates liquid–liquid phase separation and liquid-to-solid maturation of an intrinsically disordered pH-responsive domain. J. Am. Chem. Soc. 141, 20380–20389 (2019).

Article  CAS  PubMed  Google Scholar 

Abyzov, A., Blackledge, M. & Zweckstetter, M. Conformational dynamics of intrinsically disordered proteins regulate biomolecular condensate chemistry. Chem. Rev. 122, 6719–6748 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boeynaems, S. et al. Spontaneous driving forces give rise to protein−RNA condensates with coexisting phases and complex material properties. Proc. Natl Acad. Sci. USA 116, 7889–7898 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahlers, J. et al. The key role of solvent in condensation: mapping water in liquid–liquid phase-separated FUS. Biophys. J. 120, 1266–1275 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Latham, A. P. & Zhang, B. Molecular determinants for the layering and coarsening of biological condensates. Aggregate 3, e306 (2022).

Article  CAS  PubMed  Google Scholar 

Jawerth, L. et al. Protein condensates as aging Maxwell fluids. Science 370, 1317–1323 (2020).

Article  CAS  PubMed  Google Scholar 

Alshareedah, I., Moosa, M. M., Pham, M., Potoyan, D. A. & Banerjee, P. R. Programmable viscoelasticity in protein–RNA condensates with disordered sticker-spacer polypeptides. Nat. Commun. 12, 6620 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klein, I. A. et al. Partitioning of cancer therapeutics in nuclear condensates. Science 368, 1386–1392 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Folkmann, A. W., Putnam, A., Lee, C. F. & Seydoux, G. Regulation of biomolecular condensates by interfacial protein clusters. Science 373, 1218–1224 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai, Y. et al. Interface of biomolecular condensates modulates redox reactions. Chem 9, 1594–1609 (2023).

Article  CAS  PubMed  Google Scholar 

Jain, S. et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487–498 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Protter, D. S. & Parker, R. Principles and properties of stress granules. Trends Cell Biol. 26, 668–679 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boisvert, F.-M., van Koningsbruggen, S., Navascués, J. & Lamond, A. I. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 8, 574–585 (2007).

Article  CAS  PubMed  Google Scholar 

Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lafontaine, D. L., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).

Article  CAS  PubMed  Google Scholar 

Yu, H. et al. HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science 371, eabb4309 (2021).

Article  CAS  PubMed  Google Scholar 

Gouveia, B. et al. Capillary forces generated by biomolecular condensates. Nature 609, 255–264 (2022).

Article  CAS  PubMed  Google Scholar 

MacEwan, S. R. & Chilkoti, A. Elastin‐like polypeptides: biomedical applications of tunable biopolymers. Peptide Sci. 94, 60–77 (2010).

Article  CAS  Google Scholar 

Simon, J. R., Carroll, N. J., Rubinstein, M., Chilkoti, A. & López, G. P. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nat. Chem. 9, 509–515 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho, Y. et al. Effects of Hofmeister anions on the phase transition temperature of elastin-like polypeptides. J. Phys. Chem. B 112, 13765–13771 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, N. K., Quiroz, F. G., Hall, C. K., Chilkoti, A. & Yingling, Y. G. Molecular description of the LCST behavior of an elastin-like polypeptide. Biomacromolecules 15, 3522–3530 (2014).

Article  CAS  PubMed  Google Scholar 

Urry, D. W. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J. Phys. Chem. B 101, 11007–11028 (1997).

Article  CAS  Google Scholar 

Jung, K. H., Kim, S. F., Liu, Y. & Zhang, X. A fluorogenic AggTag method based on Halo‐ and SNAP‐tags to simultaneously detect aggregation of two proteins in live cells. ChemBioChem 20, 1078–1087 (2019).

Article  CAS  PubMed  Google Scholar 

Liu, Y. et al. The cation-π interaction enables a Halo-Tag fluorogenic probe for fast no-wash live cell imaging and gel-free protein quantification. Biochemistry 56, 1585–1595 (2017).

Article  CAS  PubMed  Google Scholar 

Shen, B. et al. A dual‐functional BODIPY‐based molecular rotor probe reveals different viscosity of protein aggregates in live cells. Aggregate 4, e301 (2022).

Article  Google Scholar 

Fišerová, E. & Kubala, M. Mean fluorescence lifetime and its error. J. Lumin. 132, 2059–2064 (2012).

Article  Google Scholar 

Lin, Y. et al. Liquid–liquid phase separation of tau driven by hydrophobic interaction facilitates fibrillization of tau. J. Mol. Biol. 433, 166731 (2021).

Article  CAS  PubMed  Google Scholar 

Lin, Y. et al. Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions. eLife 8, e42571 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Reynolds, R. C., Montgomery, P. O. B. & Hughes, B. Nucleolar ‘caps’ produced by actinomycin D. Cancer Res. 24, 1269–1277 (1964).

CAS  PubMed  Google Scholar 

Shav-Tal, Y. et al. Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol. Biol. Cell 16, 2395–2413 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gautier, T., Bergès, T., Tollervey, D. & Hurt, E. Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Nop1p and are required for ribosome biogenesis. Mol. Cell. Biol. 17, 7088–7098 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McDaniel, J. R., MacKay, J. A., Quiroz, F. G. & Chilkoti, A. Recursive directional ligation by plasmid reconstruction allows rapid and seamless cloning of oligomeric genes. Biomacromolecules 11, 944–952 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif