Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).
Article CAS PubMed Google Scholar
Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).
Article CAS PubMed Google Scholar
Gomes, E. & Shorter, J. The molecular language of membraneless organelles. J. Biol. Chem. 294, 7115–7127 (2019).
Article CAS PubMed Google Scholar
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
Article CAS PubMed PubMed Central Google Scholar
Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).
Dogra, P., Joshi, A., Majumdar, A. & Mukhopadhyay, S. Intermolecular charge-transfer modulates liquid–liquid phase separation and liquid-to-solid maturation of an intrinsically disordered pH-responsive domain. J. Am. Chem. Soc. 141, 20380–20389 (2019).
Article CAS PubMed Google Scholar
Abyzov, A., Blackledge, M. & Zweckstetter, M. Conformational dynamics of intrinsically disordered proteins regulate biomolecular condensate chemistry. Chem. Rev. 122, 6719–6748 (2022).
Article CAS PubMed PubMed Central Google Scholar
Boeynaems, S. et al. Spontaneous driving forces give rise to protein−RNA condensates with coexisting phases and complex material properties. Proc. Natl Acad. Sci. USA 116, 7889–7898 (2019).
Article CAS PubMed PubMed Central Google Scholar
Ahlers, J. et al. The key role of solvent in condensation: mapping water in liquid–liquid phase-separated FUS. Biophys. J. 120, 1266–1275 (2021).
Article CAS PubMed PubMed Central Google Scholar
Latham, A. P. & Zhang, B. Molecular determinants for the layering and coarsening of biological condensates. Aggregate 3, e306 (2022).
Article CAS PubMed Google Scholar
Jawerth, L. et al. Protein condensates as aging Maxwell fluids. Science 370, 1317–1323 (2020).
Article CAS PubMed Google Scholar
Alshareedah, I., Moosa, M. M., Pham, M., Potoyan, D. A. & Banerjee, P. R. Programmable viscoelasticity in protein–RNA condensates with disordered sticker-spacer polypeptides. Nat. Commun. 12, 6620 (2021).
Article CAS PubMed PubMed Central Google Scholar
Klein, I. A. et al. Partitioning of cancer therapeutics in nuclear condensates. Science 368, 1386–1392 (2020).
Article CAS PubMed PubMed Central Google Scholar
Folkmann, A. W., Putnam, A., Lee, C. F. & Seydoux, G. Regulation of biomolecular condensates by interfacial protein clusters. Science 373, 1218–1224 (2021).
Article CAS PubMed PubMed Central Google Scholar
Dai, Y. et al. Interface of biomolecular condensates modulates redox reactions. Chem 9, 1594–1609 (2023).
Article CAS PubMed Google Scholar
Jain, S. et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487–498 (2016).
Article CAS PubMed PubMed Central Google Scholar
Protter, D. S. & Parker, R. Principles and properties of stress granules. Trends Cell Biol. 26, 668–679 (2016).
Article CAS PubMed PubMed Central Google Scholar
Boisvert, F.-M., van Koningsbruggen, S., Navascués, J. & Lamond, A. I. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 8, 574–585 (2007).
Article CAS PubMed Google Scholar
Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).
Article CAS PubMed PubMed Central Google Scholar
Lafontaine, D. L., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).
Article CAS PubMed Google Scholar
Yu, H. et al. HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science 371, eabb4309 (2021).
Article CAS PubMed Google Scholar
Gouveia, B. et al. Capillary forces generated by biomolecular condensates. Nature 609, 255–264 (2022).
Article CAS PubMed Google Scholar
MacEwan, S. R. & Chilkoti, A. Elastin‐like polypeptides: biomedical applications of tunable biopolymers. Peptide Sci. 94, 60–77 (2010).
Simon, J. R., Carroll, N. J., Rubinstein, M., Chilkoti, A. & López, G. P. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nat. Chem. 9, 509–515 (2017).
Article CAS PubMed PubMed Central Google Scholar
Cho, Y. et al. Effects of Hofmeister anions on the phase transition temperature of elastin-like polypeptides. J. Phys. Chem. B 112, 13765–13771 (2008).
Article CAS PubMed PubMed Central Google Scholar
Li, N. K., Quiroz, F. G., Hall, C. K., Chilkoti, A. & Yingling, Y. G. Molecular description of the LCST behavior of an elastin-like polypeptide. Biomacromolecules 15, 3522–3530 (2014).
Article CAS PubMed Google Scholar
Urry, D. W. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J. Phys. Chem. B 101, 11007–11028 (1997).
Jung, K. H., Kim, S. F., Liu, Y. & Zhang, X. A fluorogenic AggTag method based on Halo‐ and SNAP‐tags to simultaneously detect aggregation of two proteins in live cells. ChemBioChem 20, 1078–1087 (2019).
Article CAS PubMed Google Scholar
Liu, Y. et al. The cation-π interaction enables a Halo-Tag fluorogenic probe for fast no-wash live cell imaging and gel-free protein quantification. Biochemistry 56, 1585–1595 (2017).
Article CAS PubMed Google Scholar
Shen, B. et al. A dual‐functional BODIPY‐based molecular rotor probe reveals different viscosity of protein aggregates in live cells. Aggregate 4, e301 (2022).
Fišerová, E. & Kubala, M. Mean fluorescence lifetime and its error. J. Lumin. 132, 2059–2064 (2012).
Lin, Y. et al. Liquid–liquid phase separation of tau driven by hydrophobic interaction facilitates fibrillization of tau. J. Mol. Biol. 433, 166731 (2021).
Article CAS PubMed Google Scholar
Lin, Y. et al. Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions. eLife 8, e42571 (2019).
Article PubMed PubMed Central Google Scholar
Reynolds, R. C., Montgomery, P. O. B. & Hughes, B. Nucleolar ‘caps’ produced by actinomycin D. Cancer Res. 24, 1269–1277 (1964).
Shav-Tal, Y. et al. Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol. Biol. Cell 16, 2395–2413 (2005).
Article CAS PubMed PubMed Central Google Scholar
Gautier, T., Bergès, T., Tollervey, D. & Hurt, E. Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Nop1p and are required for ribosome biogenesis. Mol. Cell. Biol. 17, 7088–7098 (1997).
Article CAS PubMed PubMed Central Google Scholar
McDaniel, J. R., MacKay, J. A., Quiroz, F. G. & Chilkoti, A. Recursive directional ligation by plasmid reconstruction allows rapid and seamless cloning of oligomeric genes. Biomacromolecules 11, 944–952 (2010).
Comments (0)