Comparable roles for serotonin in rats and humans for computations underlying flexible decision-making

Berlin GS, Hollander E. Compulsivity, impulsivity, and the DSM-5 process. CNS Spectrums. 2014;19:62–68.

Article  PubMed  Google Scholar 

Jentsch JD, Taylor JR. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology. 1999;146:373–90.

Article  CAS  PubMed  Google Scholar 

Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–73.

Article  PubMed  PubMed Central  Google Scholar 

Robbins TW, Vaghi MM, Banca P. Obsessive-compulsive disorder: puzzles and prospects. Neuron. 2019;102:27–47.

Article  CAS  PubMed  Google Scholar 

Tiffany ST. A cognitive model of drug urges and drug-use behavior - role of automatic and nonautomatic processes. Psychol Rev. 1990;97:147–68.

Article  CAS  PubMed  Google Scholar 

Brolsma SCA, Vrijsen JN, Vassena E, Kandroodi MR, Bergman MA, van Eijndhoven PF, et al. Challenging the negative learning bias hypothesis of depression: reversal learning in a naturalistic psychiatric sample. Psychol Med. 2022;52:303–13.

Article  PubMed  Google Scholar 

Kanen JW, Ersche KD, Fineberg NA, Robbins TW, Cardinal RN. Computational modelling reveals contrasting effects on reinforcement learning and cognitive flexibility in stimulant use disorder and obsessive-compulsive disorder: remediating effects of dopaminergic D2/3 receptor agents. Psychopharmacology. 2019;236:2337–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mukherjee D, Filipowicz ALS, Vo K, Satterthwaite TD, Kable JW. Reward and punishment reversal-learning in major depressive disorder. J Abnormal Psychol. 2020;129:810–23.

Article  Google Scholar 

Murphy FC, Michael A, Robbins TW, Sahakian BJ. Neuropsychological impairment in patients with major depressive disorder: the effects of feedback on task performance. Psychol Med. 2003;33:455–67.

Article  CAS  PubMed  Google Scholar 

Taylor Tavares JV, Clark L, Furey ML, Williams GB, Sahakian BJ, Drevets WC. Neural basis of abnormal response to negative feedback in unmedicated mood disorders. Neuroimage. 2008;42:1118–26.

Article  PubMed  Google Scholar 

Alsiö J, Lehmann O, McKenzie C, Theobald DE, Searle L, Xia J, et al. Serotonergic innervations of the orbitofrontal and medial-prefrontal cortices are differentially involved in visual discrimination and reversal learning in rats. Cerebral Cortex. 2021;31:1090–105.

Article  PubMed  Google Scholar 

Brown HD, Amodeo DA, Sweeney JA, Ragozzino ME. The selective serotonin reuptake inhibitor, escitalopram, enhances inhibition of prepotent responding and spatial reversal learning. J Psychopharmacol. 2012;26:1443–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC. Cognitive inflexibility after prefrontal serotonin depletion. Science. 2004;304:878–80.

Article  CAS  PubMed  Google Scholar 

den Ouden HEM, Daw ND, Fernandez G, Elshout JA, Rijpkema M, Hoogman M, et al. Dissociable effects of dopamine and serotonin on reversal learning. Neuron. 2013;80:1090–100.

Article  Google Scholar 

Lapiz-Bluhm MDS, Soto-Pina AE, Hensler JG, Morilak DA. Chronic intermittent cold stress and serotonin depletion induce deficits of reversal learning in an attentional set-shifting test in rats. Psychopharmacology. 2009;202:329–41.

Article  CAS  PubMed  Google Scholar 

Matias S, Lottem E, Dugue GP, Mainen ZF. Activity patterns of serotonin neurons underlying cognitive flexibility. eLife. 2017;6:e20552.

Article  PubMed  PubMed Central  Google Scholar 

Kanen JW, Luo Q, Kandroodi MR, Cardinal RN, Robbins TW, Carhart-Harris RL, et al. Effect of lysergic acid diethylamide (LSD) on reinforcement learning in humans. Psychol Med. 2022:1–12. https://doi.org/10.1017/S0033291722002963.

Kanen JW, Arntz FE, Yellowlees R, Cardinal RN, Price A, Christmas DM, et al. Probabilistic reversal learning under acute tryptophan depletion in healthy humans: a conventional analysis. J Psychopharmacol. 2020;34:580–83.

Article  PubMed  PubMed Central  Google Scholar 

Kanen JW, Apergis-Schoute AM, Yellowlees R, Arntz FE, van der Flier FE, Price A, et al. Serotonin depletion impairs both Pavlovian and instrumental reversal learning in healthy humans. Mol Psychiatry. 2021;26:7200–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bari A, Theobald DE, Caprioli D, Mar AC, Aidoo-Micah A, Dalley JW, et al. Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology. 2010;35:1290–301.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chamberlain SR, Muller U, Blackwell AD, Clark L, Robbins TW, Sahakian BJ. Neurochemical modulation of response inhibition and probabilistic learning in humans. Science. 2006;311:861–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lawrence AD, Sahakian BJ, Rogers RD, Hodges JR, Robbins TW. Discrimination, reversal, and shift learning in Huntington’s disease: mechanisms of impaired response selection. Neuropsychologia. 1999;37:1359–74.

Article  CAS  PubMed  Google Scholar 

Skandali N, Rowe JB, Voon V, Deakin JB, Cardinal RN, Cormack F, et al. Dissociable effects of acute SSRI (escitalopram) on executive, learning and emotional functions in healthy humans. Neuropsychopharmacology. 2018;43:2645–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bjorklund A, Baumgarten HG, Rensch A. 5,7-Dihydroxytryptamine - improvement of its selectivity for serotonin neurons in CNS by pretreatment with desipramine. J Neurochem. 1975;24:833–35.

Article  CAS  PubMed  Google Scholar 

Gelenberg AJ, Freeman MP, Markowitz JC, et al. Practice guideline for the treatment of patients with major depressive disorder. American Psychiatric Association. 2010.

Fineberg NA, Drummond LM, Reid J, et al. Management and treatment of obsessive-compulsive disorder. In: Geddes JR, Andreasen NC, Goodwin GM, (eds). New Oxford Textbook of Psychiatry. 3rd edn. Oxford, England: Oxford University Press; 2020.

Google Scholar 

Fischer AG, Jocham G, Ullsperger M. Dual serotonergic signals: a key to understanding paradoxical effects? Trends Cogn Sci. 2015;19:21–26.

Article  Google Scholar 

Blier P, de Montigny C. Current advances and trends in the treatment of depression. Trends Pharmacol Sci. 1994;15:220–6.

Article  CAS  PubMed  Google Scholar 

Invernizzi R, Belli S, Samanin R. Citalopram’s ability to increase the extracellular concentrations of serotonin in the dorsal raphe prevents the drug’s effect in the frontal cortex. Brain Res. 1992;584:322–24.

Article  CAS  PubMed  Google Scholar 

Artigas F, Romero L, de Montigny C, Blier P. Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci. 1996;19:378–83.

Article  CAS  PubMed  Google Scholar 

Hajós M, Gartside SE, Sharp T. Inhibition of median and dorsal raphe neurones following administration of the selective serotonin reuptake inhibitor paroxetine. Naunyn Schmiedebergs Arch Pharmacol. 1995;351:624–9.

Article  PubMed  Google Scholar 

Sánchez C, Meier E. Behavioral profiles of SSRIs in animal models of depression, anxiety and aggression. Are they all alike? Psychopharmacology (Berl). 1997;129:197–205.

Article  PubMed  Google Scholar 

Langley C, Armand S, Luo Q, Savulich G, Segerberg T, Søndergaard A, et al. Chronic escitalopram in healthy volunteers has specific effects on reinforcement sensitivity: a double-blind, placebo-controlled semi-randomised study. Neuropsychopharmacology. 2023;48:664–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sutton RS, Barto AG. Reinforcement learning: an introduction. 2nd edn. Cambridge, MA, USA: The MIT Press; 2012.

Google Scholar 

Cardinal RN, Parkinson JA, Hall J, Everitt BJ. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev. 2002;26:321–52.

Article  PubMed  Google Scholar 

Shahar N, Moran R, Hauser TU, Kievit RA, McNamee D, Moutoussis M, et al. Credit assignment to state-independent task representations and its relationship with model-based decision making. Proc Natl Acad Sci USA. 2019;116:15871–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller KJ, Shenhav A, Ludvig EA. Habits without values. Psychol Rev. 2019;126:292–311.

Article  PubMed  PubMed Central  Google Scholar 

Deserno L, Hauser TU. Beyond a cognitive dichotomy: can multiple decision systems prove useful to distinguish compulsive and impulsive symptom dimensions? Biol Psychiatry. 2020;88:e49–51.

Article  PubMed  Google Scholar 

Bennett D, Niv Y, Langdon AJ. Value-free reinforcement learning: policy optimization as a minimal model of operant behavior. Curr Opin Behav Sci. 2021;41:114–21.

Article  PubMed  PubMed Central  Google Scholar 

Ersch

Comments (0)

No login
gif