Central Executive Network drives delta-9-tetrahydrocannabinol (THC)-induced nonlinear changes in large-scale functional connectivity in adolescent nonhuman primates

Fischer AS, Tapert SF, Louie DL, Schatzberg AF, Singh MK. Cannabis and the developing adolescent brain. Curr Treat Options Psychiatry. 2020;7:144–61. https://doi.org/10.1007/s40501-020-00202-2.

Article  PubMed  PubMed Central  Google Scholar 

Renard J, Vitalis T, Rame M, Krebs M-O, Lenkei Z, Le Pen G, et al. Chronic cannabinoid exposure during adolescence leads to long-term structural and functional changes in the prefrontal cortex. Eur Neuropsychopharmacol. 2016;26:55–64. https://doi.org/10.1016/j.euroneuro.2015.11.005.

Article  PubMed  CAS  Google Scholar 

Stringfield SJ, Torregrossa MM. Disentangling the lasting effects of adolescent cannabinoid exposure. Prog Neuro-Psychopharmacol Biol Psychiatry. 2021;104:110067. https://doi.org/10.1016/j.pnpbp.2020.110067.

Article  CAS  Google Scholar 

Jacobus J, Tapert S. Effects of cannabis on the adolescent brain. Curr Pharm Des. 2014;20:2186–93. https://doi.org/10.2174/13816128113199990426.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Levine A, Clemenza K, Rynn M, Lieberman J. Evidence for the risks and consequences of adolescent cannabis exposure. J Am Acad Child Adolesc Psychiatry. 2017;56:214–25. https://doi.org/10.1016/j.jaac.2016.12.014.

Article  PubMed  Google Scholar 

Renard J, Krebs MO, Le Pen G, Jay TM. Long-term consequences of adolescent cannabinoid exposure in adult psychopathology. Front Neurosci. 2014;8:361. https://doi.org/10.3389/fnins.2014.00361.

Higuera-Matas A, Ucha M, Ambrosio E. Long-term consequences of perinatal and adolescent cannabinoid exposure on neural and psychological processes. Neurosci Biobehav Rev. 2015;55:119–46. https://doi.org/10.1016/j.neubiorev.2015.04.020

Article  PubMed  CAS  Google Scholar 

Rubino T, Zamberletti E, Parolaro D. Adolescent exposure to cannabis as a risk factor for psychiatric disorders. J Psychopharmacol. 2012;26:177–88.

Article  PubMed  CAS  Google Scholar 

Reilly D, Didcott P, Swift W, Hall W. Long-term cannabis use: characteristics of users in an Australian rural area. Addiction. 1998;93:837–46.

Article  PubMed  CAS  Google Scholar 

Fergusson DM, Horwood LJ. Does cannabis use encourage other forms of illicit drug use? Addiction. 2000;95:505–20.

Article  PubMed  CAS  Google Scholar 

Fergusson DM, Boden JM, Horwood LJ. Cannabis use and other illicit drug use: testing the cannabis gateway hypothesis. Addiction. 2006;101:556–69.

Article  PubMed  Google Scholar 

Stuart EA, Green KM. Using full matching to estimate causal effects in nonexperimental studies: examining the relationship between adolescent marijuana use and adult outcomes. Dev Psychol. 2008;44:395–406.

Article  PubMed  PubMed Central  Google Scholar 

Fedota JR, Stein EA. Resting-state functional connectivity and nicotine addiction: prospects for biomarker development. Ann N. Y Acad Sci. 2015;1349:64–82.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sutherland MT, McHugh MJ, Pariyadath V, Stein EA. Resting state functional connectivity in addiction: Lessons learned and a road ahead. Neuroimage. 2012;62:2281–95.

Article  PubMed  Google Scholar 

Anticevic A, Cole MW, Murray JD, Corlett PR, Wang XJ, Krystal JH. The role of default network deactivation in cognition and disease. Trends Cogn Sci. 2012;16:584–92.

Article  PubMed  PubMed Central  Google Scholar 

Lerman C, Gu H, Loughead J, Ruparel K, Yang Y, Stein EA. Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function. JAMA Psychiatry. 2014;71:523–30.

Article  PubMed  PubMed Central  Google Scholar 

Muller-Oehring EM, Jung YC, Pfefferbaum A, Sullivan EV, Schulte T. The Resting Brain of Alcoholics. Cereb Cortex. (2014).

Menon V. Large-scale brain networks and psychopathology: A unifying triple network model. Trends Cogn Sci. 2011;15:483–506. https://doi.org/10.1016/j.tics.2011.08.003.

Article  PubMed  Google Scholar 

Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci. 2010;14:277–90.

Article  PubMed  Google Scholar 

Berman MG, Peltier S, Nee DE, Kross E, Deldin PJ, & Jonides J (2011). Depression, rumination and the default network. Social Cognitive and Affective Neuroscience, 6, 548-55. Oxford Academic (Oxford University Press). https://doi.org/10.1093/scan/nsq080.

Geng H, Wang Y, Gu R, Luo YJ, Xu P, Huang Y, et al. Altered brain activation and connectivity during anticipation of uncertain threat in trait anxiety. Hum Brain Mapp. 2018;39:3898–914.

Article  PubMed  PubMed Central  Google Scholar 

Fan F, Tan S, Huang J, Chen S, Fan H, Wang Z, et al. Functional disconnection between subsystems of the default mode network in schizophrenia. Psycholog Med. 2022;52:2270–80.

Article  Google Scholar 

Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56. https://doi.org/10.1523/JNEUROSCI.5587-06.2007.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sutherland MT, Riedel MC, Flannery JS, Yanes JA, Fox PT, Stein EA, et al. Chronic cigarette smoking is linked with structural alterations in brain regions showing acute nicotinic drug-induced functional modulations. Behav Brain Funct. 2016;12:1–5.

Article  Google Scholar 

Tomasi D, Volkow ND. Striatocortical pathway dysfunction in addiction and obesity: Differences and similarities. Crit Rev Biochem Mol Biol. 2013;48:1–19. https://doi.org/10.3109/10409238.2012.735642.

Article  PubMed  CAS  Google Scholar 

Taebi A, Becker B, Klugah‐Brown B, Roecher E, Biswal B, Zweerings J, et al. Shared network‐level functional alterations across substance use disorders: A multi‐level kernel density meta‐analysis of resting‐state functional connectivity studies. Addiction Biol. 2022;27:e13200.

Article  Google Scholar 

Muller AM, Pennington DL, Meyerhoff DJ. Substance-specific and shared gray matter signatures in alcohol, opioid, and polysubstance use disorder. Front Psychiatry. 2022;12:795299.

Article  PubMed  PubMed Central  Google Scholar 

Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011;12:652–69. https://doi.org/10.1038/nrn3119.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Volkow ND, Morales M. The brain on drugs: From reward to addiction. Cell. 2015;162:712–25. https://doi.org/10.1016/j.cell.2015.07.046.

Article  PubMed  CAS  Google Scholar 

Menon V, Uddin LQ. Saliency, switching, attention, and control: A network model of insula function. Brain Struct Funct. 2010;214:655–67. https://doi.org/10.1007/s00429-010-0262-0.

Article  PubMed  PubMed Central  Google Scholar 

Fu XW, Guo CZ, Li PC, Yang DZ, & Zhang Y, (2018, February). The Identification of Default Mode Network in Rhesus Macaque Using Resting-State fMRI. In 2017 2nd International Conference on Biological Sciences and Technology (BST 2017) (pp. 80-86).

Hutchison RM, Leung LS, Mirsattari SM, Gati JS, Menon RS, Everling S. Resting-state networks in the macaque at 7 T. Neuroimage. 2011;56:1546–55.

Article  PubMed  Google Scholar 

Sengupta A, Wang F, Mishra A, Reed JL, Chen LM, Gore JC. Detection and characterization of resting state functional networks in squirrel monkey brain. Cereb Cortex Commun. 2023;4:tgad018.

Article  PubMed  PubMed Central  Google Scholar 

Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc B: Biol Sci. 2005;360:1001–13.

Article  Google Scholar 

Nelson EE, Winslow JT. Non-human primates: model animals for developmental psychopathology. Neuropsychopharmacology. 2009;34:90–105. https://doi.org/10.1038/npp.2008.150

Comments (0)

No login
gif