Le Coulant P, Leuret JP, Texier L, Kermarec J, Maleville J, Aubertin J. A case of systemic amyloidosis with plasma cell infiltration and secondary epithelioma of the liver. Presse Med. 1893;68:820–822.
Korniluk A, Koper O, Kemona H, Dymicka-Piekarska V. From inflammation to cancer. Ir J Med Sci. 2017;186(1):57–62. https://doi.org/10.1007/s11845-016-1464-0.
Article CAS PubMed Google Scholar
Abbott M, Ustoyev Y. Cancer and the Immune System: The History and Background of Immunotherapy. Semin Oncol Nurs. 2019;35(5): 150923. https://doi.org/10.1016/j.soncn.2019.08.002.
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev. 2018;32(19–20):1267–84. https://doi.org/10.1101/GAD.314617.118.
Article CAS PubMed PubMed Central Google Scholar
Loose D, Van De Wiele C. The immune system and cancer. Cancer Biother Radiopharm. 2009;24(3):369–76. https://doi.org/10.1089/cbr.2008.0593.
Article CAS PubMed Google Scholar
Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat Rev Cancer. 2021;21(6):345–59. https://doi.org/10.1038/s41568-021-00347-z.
Article CAS PubMed PubMed Central Google Scholar
Sakowska J, et al. Autoimmunity and Cancer—Two Sides of the Same Coin. Front Immunol. 2022;13(May):1–22. https://doi.org/10.3389/fimmu.2022.793234.
De Sousa Linhares A, Leitner J, Grabmeier-Pfistershammer K, Steinberger P. Not All Immune Checkpoints Are Created Equal. Front Immunol. 2018;9:1–15, 2018. https://doi.org/10.3389/fimmu.2018.01909.
Ceccarelli F, Agmon-Levin N, Perricone C. Genetic Factors of Autoimmune Diseases 2017. J Immunol Res. 2017. Hindawi. https://doi.org/10.1155/2017/2789242.
Schmidt J et al. Neoantigen-specific CD8 T cells with high structural avidity preferentially reside in and eliminate tumors. Nat Commun. 2023;14(1). https://doi.org/10.1038/s41467-023-38946-z.
Hu X, et al. Cancer Risk in Hashimoto’s Thyroiditis: a Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne). 2022;13(July):1–10. https://doi.org/10.3389/fendo.2022.937871.
Quaglino P, et al. Vitiligo is an independent favourable prognostic factor in stage III and IV metastatic melanoma patients: Results from a single-institution hospital-based observational cohort study. Ann Oncol. 2010;21(2):409–14. https://doi.org/10.1093/annonc/mdp325.
Article CAS PubMed Google Scholar
Boi F, Pani F, Mariotti S. Thyroid Autoimmunity and Thyroid Cancer: Review Focused on Cytological Studies. European Thyroid Journal. 2017;6(4):178–86. https://doi.org/10.1159/000468928.
Article CAS PubMed PubMed Central Google Scholar
Hua C, et al. Association of Vitiligo With Tumor Response in Patients With Metastatic Melanoma Treated With Pembrolizumab. JAMA dermatology. 2016;152(1):45–51. https://doi.org/10.1001/jamadermatol.2015.2707.
Hu X, Chen Y, Shen Y, Tian R, Sheng Y, Que H. Global prevalence and epidemiological trends of Hashimoto’s thyroiditis in adults: A systematic review and meta-analysis. Front Public Heal. 2022;10. https://doi.org/10.3389/fpubh.2022.1020709.
Ragusa F, et al. Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best Pract Res Clin Endocrinol Metab. 2019;33(6): 101367. https://doi.org/10.1016/j.beem.2019.101367.
Diab N et al. Prevalence and Risk Factors of Thyroid Dysfunction in Older Adults in the Community. Sci Rep. 2019;9(1):13156. https://doi.org/10.1038/s41598-019-49540-z.
Hollowell JG, et al. Serum TSH, T4, and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87(2):489–99. https://doi.org/10.1210/jcem.87.2.8182.
Article CAS PubMed Google Scholar
Garmendia Madariaga A, Santos Palacios S, Guillén-Grima F, Galofré JC. The incidence and prevalence of thyroid dysfunction in Europe: A meta-analysis. J Clin Endocrinol Metab. 2014;99(3):923–931. https://doi.org/10.1210/jc.2013-2409.
Mendes D, Alves C, Silverio N, Marques FB. Prevalence of Undiagnosed Hypothyroidism in Europe: A Systematic Review and Meta-Analysis. Eur Thyroid J. 2019;8(3):130–43. https://doi.org/10.1159/000499751.
Article PubMed PubMed Central Google Scholar
Ralli M, et al. Hashimoto’s thyroiditis: An update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmun Rev. 2020;19(10): 102649. https://doi.org/10.1016/j.autrev.2020.102649.
Article CAS PubMed Google Scholar
Bery AI, Shepherd HM, Li W, Krupnick AS, Gelman AE, Kreisel D. Role of tertiary lymphoid organs in the regulation of immune responses in the periphery. Cell Mol Life Sci. 2022;79(7):1–18. https://doi.org/10.1007/s00018-022-04388-x.
Ferrari SM, et al. Chemokines in thyroid autoimmunity. Best Pract Res Clin Endocrinol Metab. 2023;37(2):101773. https://doi.org/10.1016/j.beem.2023.101773.
Álvarez-Sierra D, et al. Analysis of the PD-1/PD-L1 axis in human autoimmune thyroid disease: Insights into pathogenesis and clues to immunotherapy associated thyroid autoimmunity. J Autoimmun. 2019;103:102285. https://doi.org/10.1016/j.jaut.2019.05.013.
Zhang S, Wang L, Li M, Zhang F, Zeng X. The PD-1/PD-L pathway in rheumatic diseases. J Formos Med Assoc. 2021;120(1 Pt 1):48–59. https://doi.org/10.1016/j.jfma.2020.04.004.
Article CAS PubMed Google Scholar
Álvarez-Sierra D, et al. Lymphocytic Thyroiditis Transcriptomic Profiles Support the Role of Checkpoint Pathways and B Cells in Pathogenesis. Thyroid. 2022;32(6):682–93. https://doi.org/10.1089/thy.2021.0694.
Article CAS PubMed PubMed Central Google Scholar
Salazar-Viedma M, Vergaño-Salazar JG, Pastenes L, D’Afonseca V. Simulation Model for Hashimoto Autoimmune Thyroiditis Disease. Endocrinol (United States). 2021;162. https://doi.org/10.1210/endocr/bqab190.
McLachlan SM, Rapoport B. Thyrotropin-blocking autoantibodies and thyroid-stimulating autoantibodies: potential mechanisms involved in the pendulum swinging from hypothyroidism to hyperthyroidism or vice versa. Thyroid. 2013;23(1):14–24. https://doi.org/10.1089/thy.2012.0374.
Article CAS PubMed PubMed Central Google Scholar
Franco JS, Amaya-Amaya J, Anaya JM. Thyroid disease and autoimmune diseases. In: Anaya JM, Shoenfeld Y, Rojas-Villarraga A, et al., editors. Autoimmunity: From Bench to Bedside [Internet]. Bogota (Colombia): El Rosario University Press; 2013 Jul 18. Chapter 30. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459466/.
Kaykhaein MA, et al. Association of CTLA4 (rs4553808) and PTPN22 (rs2476601) gene polymorphisms with Hashimoto’s thyroiditis disease: A case-control study and an In-silico analysis. Meta Gene. 2020;24:100693. https://doi.org/10.1016/j.mgene.2020.100693.
Aversa T, et al. Peculiarities of autoimmune thyroid diseases in children with Turner or Down syndrome: An overview. Ital J Pediatr. 2015;41(1):1–5. https://doi.org/10.1186/s13052-015-0146-2.
Martínez-Hernández R, Marazuela M. MicroRNAs in autoimmune thyroid diseases and their role as biomarkers. Best Pract Res Clin Endocrinol Metab. 2023;37(2): 101741. https://doi.org/10.1016/j.beem.2023.101741.
Article CAS PubMed Google Scholar
Bernecker C, et al. MicroRNAs miR-146a1, miR-155-2, and miR-200a1 are regulated in autoimmune thyroid diseases. Thyroid. 2012;22(12):1294–5. https://doi.org/10.1089/thy.2012.0277.
Article CAS PubMed Google Scholar
Klicka K, Grzywa TM, Mielniczuk A, Klinke A, Włodarski PK. The role of miR-200 family in the regulation of hallmarks of cancer. Front Oncol. 2022;12: 965231. https://doi.org/10.3389/fonc.2022.965231.
Article CAS PubMed PubMed Central Google Scholar
Thai T-H, et al. Regulation of the germinal center response by microRNA-155. Science. 2007;316(5824):604–8. https://doi.org/10.1126/science.1141229.
Article CAS PubMed Google Scholar
Tanaka PP, et al. miR-155 exerts posttranscriptional control of autoimmune regulator (Aire) and tissue-restricted antigen genes in medullary thymic epithelial cells. BMC Genom. 2022;23(1):404. https://doi.org/10.1186/s12864-022-08631-4.
Martínez-Hernández R, et al. Integrated miRNA and mRNA expression profiling identifies novel targets and pathological mechanisms in autoimmune thyroid diseases. EBioMedicine. 2019;50:329–42. https://doi.org/10.1016/j.ebiom.2019.10.061.
Article CAS PubMed PubMed Central Google Scholar
Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-Mediated Metastasis: Communication from a Distance. Dev Cell. 2019;49(3):347–60. https://doi.org/10.1016/j.devcel.2019.04.011.
Article CAS PubMed Google Scholar
Mirzaei R, et al. The pathogenic, therapeutic and diagnostic role of exosomal microRNA in the autoimmune diseases. J Neuroimmunol. 2021;358: 577640. https://doi.org/10.1016/j.jneuroim.2021.577640.
Article CAS PubMed Google Scholar
Chaudhari P, Ghate V, Nampoothiri M, Lewis S. Multifunctional role of exosomes in viral diseases: From transmission to diagnosis and therapy. Cell Signal. 2022;94: 110325. https://doi.org/10.1016/j.cellsig.2022.110325.
Article CAS PubMed PubMed Central Google Scholar
Dai J, et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 2020;5(1):145. https://doi.org/10.1038/s41392-020-00261-0.
Rodríguez-Muñoz A, et al. Circulating microvesicles regulate treg and Th17 differentiation in human autoimmune thyroid disorders. J Clin Endocrinol Metab. 2015;100(12):E1531–9. https://doi.org/10.1210/jc.2015-3146.
Rodríguez-Muñoz A, et al. Circulating Microvesicles Regulate Treg and Th17 Differentiation in Human Autoimmune Thyroid Disorders. J Clin Endocrinol Metab. 2015;100(12):E1531-9. https://doi.org/10.1210/jc.2015-3146.
Boi F, Lai ML, Marziani B, Minerba L, Faa G, Mariotti S. High prevalence of suspicious cytology in thyroid nodules associated with positive thyroid autoantibodies. Eur J Endocrinol. 2005;153(5):637–42. https://doi.org/10.1530/eje.1.02020.
Comments (0)