Adhikari A., Teijaro C. N., Townsend C. A. & Shen B. in Comprehensive Natural Products III (eds Liu, H.-W. & Begley, T. P.) 365–414 (Elsevier, 2020).
Adhikari, A., Shen, B. & Rader, C. Challenges and opportunities to develop enediyne natural products as payloads for antibody-drug conjugates. Antib. Ther. 4, 1–15 (2021).
CAS PubMed PubMed Central Google Scholar
Maeda, H. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv. Drug Deliv. Rev. 46, 169–185 (2001).
Article CAS PubMed Google Scholar
Konishi, M. et al. Dynemicin A, a novel antibiotic with the anthraquinone and 1,5-diyn-3-ene subunit. J. Antibiot. 42, 1449–1452 (1989).
Davies, J. et al. Uncialamycin, a new enediyne antibiotic. Org. Lett. 7, 5233–5236 (2005).
Article CAS PubMed Google Scholar
Yan, X. et al. Strain prioritization and genome mining for enediyne natural products. mBio 7, e02104–e02116 (2016).
Article CAS PubMed PubMed Central Google Scholar
Nicolaou, K. C. et al. Uncialamycin-based antibody–drug conjugates: unique enediyne ADCs exhibiting bystander killing effect. Proc. Natl Acad. Sci. USA 118, e2107042118 (2021).
Article CAS PubMed PubMed Central Google Scholar
Low, Z. J. et al. Sungeidines from a non-canonical enediyne biosynthetic pathway. J. Am. Chem. Soc. 142, 1673–1679 (2020).
Article CAS PubMed Google Scholar
Steele, A. D. et al. Application of a biocatalytic strategy for the preparation of tiancimycin-based antibody–drug conjugates revealing key insights into structure–activity relationships. J. Med. Chem. 66, 1562–1573 (2023).
Article CAS PubMed Google Scholar
Igarashi, M. et al. Sealutomicins, new enediyne antibiotics from the deep-sea actinomycete Nonomuraea sp. MM565M-173N2. J. Antibiot. 74, 291–299 (2021).
Gui, C. et al. Intramolecular C–C bond formation links anthraquinone and enediyne scaffolds in tiancimycin biosynthesis. J. Am. Chem. Soc. 144, 20452–20462 (2022).
Article CAS PubMed PubMed Central Google Scholar
Yan, X. et al. Comparative studies of the biosynthetic gene clusters for anthraquinone-fused enediynes shedding light into the tailoring steps of tiancimycin biosynthesis. Org. Lett. 20, 5918–5921 (2018).
Article CAS PubMed PubMed Central Google Scholar
Machovina, M. M., Usselman, R. J. & DuBois, J. L. Monooxygenase substrates mimic flavin to catalyze cofactorless oxygenations. J. Biol. Chem. 291, 17816–17828 (2016).
Article CAS PubMed PubMed Central Google Scholar
Thierbach, S. et al. Substrate-assisted O2 activation in a cofactor-independent dioxygenase. Chem. Biol. 21, 217–225 (2014).
Article CAS PubMed Google Scholar
Hernández-Ortega, A. et al. Catalytic mechanism of cofactor-free dioxygenases and how they circumvent spin-forbidden oxygenation of their substrates. J. Am. Chem. Soc. 137, 7474–7487 (2015).
Machovina, M. M., Ellis, E. S., Carney, T. J., Brushett, F. R. & DuBois, J. L. How a cofactor-free protein environment lowers the barrier to O2 reactivity. J. Biol. Chem. 294, 3661–3669 (2019).
Article CAS PubMed PubMed Central Google Scholar
Steiner, R. A., Janssen, H. J., Roversi, P., Oakley, A. J. & Fetzner, S. Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the α/β-hydrolase fold. Proc. Natl Acad. Sci. USA 107, 657–662 (2010).
Article CAS PubMed Google Scholar
Jansson, A. et al. Aclacinomycin 10-hydroxylase is a novel substrate-assisted hydroxylase requiring S-adenosyl-l-methionine as cofactor. J. Biol. Chem. 280, 3636–3644 (2005).
Article CAS PubMed Google Scholar
Fetzner, S. & Steiner, R. A. Cofactor-independent oxidases and oxygenases. Appl. Microbiol. Biotechnol. 86, 791–804 (2010).
Article CAS PubMed Google Scholar
Matthews, J. C., Hori, K. & Cormier, M. J. Substrate and substrate analog binding properties of Renilla luciferase. Biochemistry 16, 5217–5220 (1977).
Article CAS PubMed Google Scholar
Sarma, A. D. & Tipton, P. A. Evidence for urate hydroperoxide as an intermediate in the urate oxidase reaction. J. Am. Chem. Soc. 122, 11252–11253 (2000).
Sciara, G. et al. The structure of ActVA-Orf6, a novel type of monooxygenase involved in actinorhodin biosynthesis. EMBO J. 22, 205–215 (2003).
Article CAS PubMed PubMed Central Google Scholar
Widboom, P. F., Fielding, E. N., Liu, Y. & Bruner, S. D. Structural basis for cofactor-independent dioxygenation in vancomycin biosynthesis. Nature 447, 342–345 (2007).
Article CAS PubMed Google Scholar
Siitonen, V., Blauenburg, B., Kallio, P., Mäntsälä, P. & Metsä-Ketelä, M. Discovery of a two-component monooxygenase SnoaW/SnoaL2 involved in nogalamycin biosynthesis. Chem. Biol. 19, 638–646 (2012).
Article CAS PubMed Google Scholar
Shen, B. & Hutchinson, C. R. Tetracenomycin F1 monooxygenase: oxidation of a naphthacenone to a naphthacenequinone in the biosynthesis of tetracenomycin C in Streptomyces glaucescens. Biochemistry 32, 6656–6663 (1993).
Article CAS PubMed Google Scholar
Tokiwa, Y. et al. Biosynthesis of dynemicin A, a 3-ene-1,5-diyne antitumor antibiotic. J. Am. Chem. Soc. 114, 4107–4110 (1992).
Nicolaou, K. C. et al. Total synthesis and biological evaluation of tiancimycins A and B, yangpumicin A, and related anthraquinone-fused enediyne antitumor antibiotics. J. Am. Chem. Soc. 142, 2549–2561 (2020).
Article CAS PubMed Google Scholar
Bar-Even, A. et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011).
Article CAS PubMed Google Scholar
Marsh, E. N. G. & Waugh, M. W. Aldehyde decarbonylases: enigmatic enzymes of hydrocarbon biosynthesis. ACS Catal. 3, 2515–2521 (2013).
Qiu, Y. et al. An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc. Natl Acad. Sci. USA 109, 14858–14863 (2012).
Article CAS PubMed PubMed Central Google Scholar
Schirmer, A., Rude, M. A., Li, X., Popova, E. & del Cardayre, S. B. Microbial biosynthesis of alkanes. Science 329, 559–562 (2010).
Article CAS PubMed Google Scholar
Warui, D. M. et al. Detection of formate, rather than carbon monoxide, as the stoichiometric coproduct in conversion of fatty aldehydes to alkanes by a cyanobacterial aldehyde decarbonylase. J. Am. Chem. Soc. 133, 3316–3319 (2011).
Article CAS PubMed PubMed Central Google Scholar
Schneider-Belhaddad, F. & Kolattukudy, P. Solubilization, partial purification, and characterization of a fatty aldehyde decarbonylase from a higher plant, Pisum sativum. Arch. Biochem. Biophys. 377, 341–349 (2000).
Article CAS PubMed Google Scholar
Yoshimoto, F. K. & Guengerich, F. P. Mechanism of the third oxidative step in the conversion of androgens to estrogens by cytochrome P450 19A1 steroid aromatase. J. Am. Chem. Soc. 136, 15016–15025 (2014).
Article CAS PubMed PubMed Central Google Scholar
He, H.-Y. & Ryan, K. S. Glycine-derived nitronates bifurcate to O-methylation or denitrification in bacteria. Nat. Chem. 13, 599–606 (2021).
Article CAS PubMed Google Scholar
Jonnalagadda, R. et al. Biochemical and crystallographic investigations into isonitrile formation by a nonheme iron-dependent oxidase/decarboxylase. J. Biol. Chem. 296, 100231 (2021).
Article CAS PubMed PubMed Central Google Scholar
Zhang, Z. et al. Enzyme-catalyzed inverse-electron demand Diels–Alder reaction in the biosynthesis of antifungal ilicicolin H. J. Am. Chem. Soc. 141, 5659–5663 (2019).
Article CAS PubMed PubMed Central Google Scholar
Townsend, C. A. New reactions in clavulanic acid biosynthesis. Curr. Opin. Chem. Biol. 6, 583–589 (2002).
Comments (0)