Brett MR, Brett MR, Jennifer BP et al (2017) Epidemiology of ovarian cancer: a review. Cancer Biol Med 14 (1):9–32. https://doi.org/10.20892/j.issn.2095-3941.2016.0084
Lengyel E (2010) Ovarian cancer development and metastasis. Am J Pathol 177(3):1053–1064. https://doi.org/10.2353/ajpath.2010.100105
Article PubMed PubMed Central Google Scholar
Coburn SB, Bray F, Sherman ME et al (2017) International patterns and trends in ovarian cancer incidence, overall and by histologic subtype. Int J Cancer 140(11):2451–2460
Article CAS PubMed PubMed Central Google Scholar
Siegel RL, Miller KD, Wagle NS et al (2023) Cancer statistics, 2023. CA Cancer J Clin 73(1):17–48. https://doi.org/10.3322/caac.21763
Fang Y, Zhao J, Guo X et al (2022) Establishment, immunological analysis, and drug prediction of a prognostic signature of ovarian cancer related to histone acetylation. Front Pharmacolo. https://doi.org/10.3389/fphar.2022.947252
Wang D, Li C, Zhang Y et al (2016) Combined inhibition of PI3K and PARP is effective in the treatment of ovarian cancer cells with wild-type PIK3CA genes. Gynecol Oncol 142(3):548–556. https://doi.org/10.1016/j.ygyno.2016.07.092
Article CAS PubMed PubMed Central Google Scholar
Levine DA, Bogomolniy F, Yee CJ et al (2005) Frequent mutation of the PIK3CA gene in ovarian and breast cancers. Clin Cancer Res 11(8):2875–2878. https://doi.org/10.1158/1078-0432.Ccr-04-2142
Article CAS PubMed Google Scholar
Shayesteh L, Lu Y, Kuo W-L et al (1999) PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21(1):99–102. https://doi.org/10.1038/5042
Article CAS PubMed Google Scholar
Yano M, Yasuda M, Sakaki M et al (2018) Association of histone deacetylase expression with histology and prognosis of ovarian cancer. Oncol Lett 15(3):3524–3531. https://doi.org/10.3892/ol.2018.7726
Article CAS PubMed Google Scholar
Islam MM, Banerjee T, Packard CZ et al (2017) HDAC10 as a potential therapeutic target in ovarian cancer. Gynecol Oncol 144(3):613–620
Article CAS PubMed PubMed Central Google Scholar
Ali A, Zhang F, Maguire A et al (2020) HDAC6 degradation inhibits the growth of high-grade serous ovarian cancer cells. Cancers 12(12):3734. https://doi.org/10.3390/cancers12123734
Article CAS PubMed PubMed Central Google Scholar
Yoo J, Jeon Y, Lee D et al (2021) HDAC6-selective inhibitors enhance anticancer effects of paclitaxel in ovarian cancer cells. Oncol Lett 21(3):201. https://doi.org/10.3892/ol.2021.12462
Article CAS PubMed PubMed Central Google Scholar
Qian C, Lai CJ, Bao R et al (2012) Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. J Clin Cancer Res 18(15):4104
Fu X-h, Zhang X, Yang H et al (2018) CUDC-907 displays potent antitumor activity against human pancreatic adenocarcinoma in vitro and in vivo through inhibition of HDAC6 to downregulate c-Myc expression. Acta Pharmacologica Sinica 40(5):677–688. https://doi.org/10.1038/s41401-018-0108-5
Article CAS PubMed Google Scholar
Nebbioso A, Carafa V, Conte M et al (2017) c-Myc Modulation and Acetylation Is a Key HDAC Inhibitor Target in Cancer. Clin Cancer Res 23(10):2542–2555. https://doi.org/10.1158/1078-0432.Ccr-15-2388
Article CAS PubMed Google Scholar
Sun K, Atoyan R, Borek MA et al (2017) Dual HDAC and PI3K Inhibitor CUDC-907 Downregulates MYC and Suppresses Growth of MYC-dependent Cancers. Mol Cancer Therapeut 16(2):285–299. https://doi.org/10.1158/1535-7163.Mct-16-0390
Prathapam T, Aleshin A, Guan Y et al (2010) p27Kip1 mediates addiction of ovarian cancer cells to MYCC (c-MYC) and their dependence on MYC paralogs. J Biol Chem 285(42):32529–32538. https://doi.org/10.1074/jbc.M110.151902
Article CAS PubMed PubMed Central Google Scholar
Cancer Genome Atlas Research N (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474(7353):609–615. https://doi.org/10.1038/nature10166
Kotian S, Zhang L, Boufraqech M et al (2017) Dual inhibition of HDAC and tyrosine kinase signaling pathways with CUDC-907 inhibits thyroid cancer growth and metastases. Clin Cancer Res 23(17):5044–5054. https://doi.org/10.1158/1078-0432.Ccr-17-1043
Article CAS PubMed PubMed Central Google Scholar
Ma L, Bian X, Lin W (2020) The dual HDAC-PI3K inhibitor CUDC-907 displays single-agent activity and synergizes with PARP inhibitor olaparib in small cell lung cancer. J Experim Clin Cancer Res 39(1):219. https://doi.org/10.1186/s13046-020-01728-2
Chilamakuri R, Agarwal S (2022) Dual targeting of PI3K and HDAC by CUDC-907 inhibits pediatric neuroblastoma growth. Cancers 14(4):1067. https://doi.org/10.3390/cancers14041067
Article CAS PubMed PubMed Central Google Scholar
Jian Z, Han Y, Zhang W et al (2022) Anti-tumor effects of dual PI3K-HDAC inhibitor CUDC-907 on activation of ROS-IRE1α-JNK-mediated cytotoxic autophagy in esophageal cancer. Cell Biosci 12(1):135. https://doi.org/10.1186/s13578-022-00855-x
Article CAS PubMed PubMed Central Google Scholar
Tang Z, Li C, Kang B et al (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45(W1):W98–W102. https://doi.org/10.1093/nar/gkx247
Article CAS PubMed PubMed Central Google Scholar
Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discovery 2(5):401–404. https://doi.org/10.1158/2159-8290.Cd-12-0095
Cai L, Liao Z, Li S et al (2022) PLP1 may serve as a potential diagnostic biomarker of uterine fibroids. Front Genet 13:1045395. https://doi.org/10.3389/fgene.2022.1045395
Article CAS PubMed PubMed Central Google Scholar
Yu CF, Liu Z-X, Cantley LG (2002) ERK negatively regulates the epidermal growth factor-mediated interaction of Gab1 and the phosphatidylinositol 3-kinase. J Biol Chem 277(22):19382–19388. https://doi.org/10.1074/jbc.M200732200
Article CAS PubMed Google Scholar
Angelucci A, Zhong H, Sanchez C et al (2013) Synergistic effects of concurrent blockade of PI3K and MEK pathways in pancreatic cancer preclinical models. PLoS One 8(10):e77243. https://doi.org/10.1371/journal.pone.0077243
Pramanik SD, Kumar Halder A, Mukherjee U et al (2022) Potential of histone deacetylase inhibitors in the control and regulation of prostate, breast and ovarian cancer. Front Chem 10:948217. https://doi.org/10.3389/fchem.2022.948217
Article CAS PubMed Google Scholar
Mendoza MC, Er EE, Blenis J (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36(6):320–328. https://doi.org/10.1016/j.tibs.2011.03.006
Article CAS PubMed Central Google Scholar
Greve G, Schiffmann I, Pfeifer D et al (2015) The pan-HDAC inhibitor panobinostat acts as a sensitizer for erlotinib activity in EGFR-mutated and -wildtype non-small cell lung cancer cells. BMC Cancer 15(1):947. https://doi.org/10.1186/s12885-015-1967-5
Article CAS PubMed PubMed Central Google Scholar
Mondello P, Derenzini E, Asgari Z et al (2017) Dual inhibition of histone deacetylases and phosphoinositide 3-kinase enhances therapeutic activity against B cell lymphoma. Oncotarget 8 (8):14017–14028. https://doi.org/10.18632/oncotarget.14876
Zhang W, Zhang Y, Tu T et al (2020) Dual inhibition of HDAC and tyrosine kinase signaling pathways with CUDC-907 attenuates TGFβ1 induced lung and tumor fibrosis. Cell Death Dis 11(9):765. https://doi.org/10.1038/s41419-020-02916-w
Article CAS PubMed Central Google Scholar
Younes A, Berdeja JG, Patel MR et al (2016) Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial. Lancet Oncol 17(5):622–631. https://doi.org/10.1016/s1470-2045(15)00584-7
Article CAS PubMed PubMed Central Google Scholar
Landsburg DJ, Barta SK, Ramchandren R et al (2021) Fimepinostat (CUDC-907) in patients with relapsed/refractory diffuse large B cell and high-grade B-cell lymphoma: report of a phase 2 trial and exploratory biomarker analyses. British J Haematol 195(2):201–209. https://doi.org/10.1111/bjh.17730
Lee YJ, Kim D, Kim H-S et al (2019) Integrating a next generation sequencing panel into clinical practice in ovarian cancer. Yonsei Med J 60(10):914–923. https://doi.org/10.3349/ymj.2019.60.10.914
Comments (0)