Ruthenium–dihydroartemisinin complex: a promising new compound for colon cancer prevention via G1 cell cycle arrest, apoptotic induction, and adaptive immune regulation

Tang Y, Li X, Yuan Y et al (2022) Network pharmacology-based predictions of active components and pharmacological mechanisms of Artemisia annua L for the treatment of the novel Corona virus disease 2019 (COVID-19). BMC Complement Med Ther 22:56. https://doi.org/10.1186/s12906-022-03523-2

Article  PubMed  PubMed Central  CAS  Google Scholar 

van der Kooy F, Sullivan SE (2013) The complexity of medicinal plants: the traditional Artemisia annua formulation, current status and future perspectives. J Ethnopharmacol 150:1–13. https://doi.org/10.1016/j.jep.2013.08.021

Article  PubMed  CAS  Google Scholar 

Feng X, Cao S, Qiu F, Zhang B (2020) Traditional application and modern pharmacological research of Artemisia annua L. Pharmacol Ther 216:107650. https://doi.org/10.1016/j.pharmthera.2020.107650

Article  PubMed  CAS  Google Scholar 

Tu Y (2016) Artemisinin-a gift from traditional chinese medicine to the world (nobel lecture). Angew Chem Int Ed Engl 55:10210–10226. https://doi.org/10.1002/anie.201601967

Article  PubMed  CAS  Google Scholar 

Kong XJ, Liu KM, Zuo HL et al (2022) The changing global landscape in the development of artemisinin-based treatments: a clinical trial perspective. Am J Chin Med 50:733–748. https://doi.org/10.1142/S0192415X22500306

Article  PubMed  CAS  Google Scholar 

Ho WE, Peh HY, Chan TK, Wong WS (2014) Artemisinins: pharmacological actions beyond anti-malarial. Pharmacol Ther 142:126–139. https://doi.org/10.1016/j.pharmthera.2013.12.001

Article  PubMed  CAS  Google Scholar 

Kim EJ, Kim GT, Kim BM et al (2017) Apoptosis-induced effects of extract from Artemisia annua Linne by modulating PTEN/p53/PDK1/Akt/ signal pathways through PTEN/p53-independent manner in HCT116 colon cancer cells. BMC Complement Altern Med 17:236. https://doi.org/10.1186/s12906-017-1702-7

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lin AJ, Klayman DL, Milhous WK (1987) Antimalarial activity of new water-soluble dihydroartemisinin derivatives. J Med Chem 30:2147–2150. https://doi.org/10.1021/jm00394a037

Article  PubMed  CAS  Google Scholar 

Alven S, Aderibigbe BA (2020) Nanoparticles formulations of artemisinin and derivatives as potential therapeutics for the treatment of cancer, leishmaniasis and malaria. Pharmaceutics. https://doi.org/10.3390/pharmaceutics12080748

Article  PubMed  PubMed Central  Google Scholar 

Ndagi U, Mhlongo N, Soliman ME (2017) Metal complexes in cancer therapy - an update from drug design perspective. Drug Des Devel Ther 11:599–616. https://doi.org/10.2147/DDDT.S119488

Article  PubMed  PubMed Central  CAS  Google Scholar 

Long DF, Repta AJ (1981) Cisplatin: chemistry, distribution and biotransformation. Biopharm Drug Dispos 2:1–16. https://doi.org/10.1002/bdd.2510020102

Article  PubMed  CAS  Google Scholar 

Huang W, Wang Y, He T et al (2022) Arteannuin B enhances the effectiveness of cisplatin in non-small cell lung cancer by regulating connexin 43 and MAPK pathway. Am J Chin Med 50:1963–1992. https://doi.org/10.1142/S0192415X22500847

Article  PubMed  CAS  Google Scholar 

Zhang JJ, Zhou YD, Liu YB et al (2021) Protective effect of 20(R)-ginsenoside Rg3 against cisplatin-induced renal toxicity via PI3K/AKT and NF-[Formula: see text]B signaling pathways based on the premise of ensuring anticancer effect. Am J Chin Med 49:1739–1756. https://doi.org/10.1142/S0192415X21500828

Article  PubMed  CAS  Google Scholar 

Sanna B, Debidda M, Pintus G et al (2002) The anti-metastatic agent imidazolium trans-imidazoledimethylsulfoxide-tetrachlororuthenate induces endothelial cell apoptosis by inhibiting the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway. Arch Biochem Biophys 403:209–218. https://doi.org/10.1016/s0003-9861(02)00218-7

Article  PubMed  CAS  Google Scholar 

Rademaker-Lakhai JM, van den Bongard D, Pluim D et al (2004) A phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Clin Cancer Res 10:3717–3727. https://doi.org/10.1158/1078-0432.CCR-03-0746

Article  PubMed  CAS  Google Scholar 

Kostova I (2006) Ruthenium complexes as anticancer agents. Curr Med Chem 13:1085–1107. https://doi.org/10.2174/092986706776360941

Article  PubMed  CAS  Google Scholar 

Lentz F, Drescher A, Lindauer A et al (2009) Pharmacokinetics of a novel anticancer ruthenium complex (KP1019, FFC14A) in a phase I dose-escalation study. Anticancer Drugs 20:97–103. https://doi.org/10.1097/CAD.0b013e328322fbc5

Article  PubMed  CAS  Google Scholar 

McCarthy N (2013) Tumorigenesis: all together now. Nat Rev Cancer 13:148. https://doi.org/10.1038/nrc3469

Article  PubMed  CAS  Google Scholar 

Swierczynski M, Szymaszkiewicz A, Fichna J, Zielinska M (2020) New insights into molecular pathways in colorectal cancer: adiponectin, interleukin-6 and opioid signaling. Biochim Biophys Acta Rev Cancer 1875:188460. https://doi.org/10.1016/j.bbcan.2020.188460

Article  PubMed  CAS  Google Scholar 

Madka V, Rao CV (2013) Anti-inflammatory phytochemicals for chemoprevention of colon cancer. Curr Cancer Drug Targets 13:542–557

Article  PubMed  CAS  Google Scholar 

Wang CZ, Yu C, Wen XD et al (2016) American ginseng attenuates colitis-associated colon carcinogenesis in mice: impact on gut microbiota and metabolomics. Cancer Prev Res (Phila) 9:803–811. https://doi.org/10.1158/1940-6207.CAPR-15-0372

Article  PubMed  Google Scholar 

Liang Y, Li C, Li L et al (2021) Artemisinin ruthenium metal complex, its preparation method and medical application in anti-tumor and anti-malaria. CN Patent CN2021–10184349 113150033

Yao H, Wan JY, Zeng J et al (2018) Effects of compound K, an enteric microbiome metabolite of ginseng, in the treatment of inflammation associated colon cancer. Oncol Lett 15:8339–8348. https://doi.org/10.3892/ol.2018.8414

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang CZ, Zhang CF, Luo Y et al (2020) Baicalein, an enteric microbial metabolite, suppresses gut inflammation and cancer progression in Apc(Min/+) mice. Clin Transl Oncol 22:1013–1022. https://doi.org/10.1007/s12094-019-02225-5

Article  PubMed  CAS  Google Scholar 

Liu H, Lu W, He H et al (2019) Inflammation-dependent overexpression of c-Myc enhances CRL4(DCAF4) E3 ligase activity and promotes ubiquitination of ST7 in colitis-associated cancer. J Pathol 248:464–475. https://doi.org/10.1002/path.5273

Article  PubMed  CAS  Google Scholar 

Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA Cancer J Clin 73:17–48. https://doi.org/10.3322/caac.21763

Article  PubMed  Google Scholar 

Siegel RL, Miller KD, Goding Sauer A et al (2020) Colorectal cancer statistics, 2020. CA Cancer J Clin 70:145–164. https://doi.org/10.3322/caac.21601

Article  PubMed  Google Scholar 

Schuurhuizen C, Braamse AMJ, Konings I et al (2017) Does severe toxicity affect global quality of life in patients with metastatic colorectal cancer during palliative systemic treatment? A systematic review. Ann Oncol 28:478–486. https://doi.org/10.1093/annonc/mdw617

Article  PubMed  CAS  Google Scholar 

Mehendale S, Aung H, Wang A et al (2005) American ginseng berry extract and ginsenoside Re attenuate cisplatin-induced kaolin intake in rats. Cancer Chemother Pharmacol 56:63–69. https://doi.org/10.1007/s00280-004-0956-1

Article  PubMed  CAS  Google Scholar 

Wang CZ, Fishbein A, Aung HH et al (2005) Polyphenol contents in grape-seed extracts correlate with antipica effects in cisplatin-treated rats. J Altern Complement Med 11:1059–1065. https://doi.org/10.1089/acm.2005.11.1059

Article  PubMed  Google Scholar 

Wang CZ, Luo X, Zhang B et al (2007) Notoginseng enhances anti-cancer effect of 5-fluorouracil on human colorectal cancer cells. Cancer Chemother Pharmacol 60:69–79. https://doi.org/10.1007/s00280-006-0350-2

Article  PubMed  CAS  Google Scholar 

Li XL, Wang CZ, Sun S et al (2009) American ginseng berry enhances chemopreventive effect of 5-FU on human colorectal cancer cells. Oncol Rep 22:943–952

PubMed  Google Scholar 

Zeng L, Gupta P, Chen Y et al (2017) The development of anticancer ruthenium (ii) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev 46:5771–5804. https://doi.org/10.1039/c7cs00195a

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang Y, Bian L, Chakraborty T et al (2019) Construing the biochemical and molecular mechanism underlying the in vivo and in vitro chemotherapeutic efficacy of ruthenium-baicalein complex in colon cancer. Int J Biol Sci 15:1052–1071. https://doi.org/10.7150/ijbs.31143

Article  PubMed  PubMed Central  CAS  Goo

Comments (0)

No login
gif