Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R (2000) Aging of skeletal muscle: a 12-yr longitudinal study. J Appl Physiol (Bethesda, Md: 1985) 88(4):1321–6. https://doi.org/10.1152/jappl.2000.88.4.1321
Pasco JA (2019) Age-related changes in muscle and bone. In: Dusque G (ed) Osteosarcopenia: bone, muscle and fat interactions. Springer, Cham, pp 45–71
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31. https://doi.org/10.1093/ageing/afy169
Greendale GA, Sowers M, Han W, Huang MH, Finkelstein JS, Crandall CJ et al (2012) Bone mineral density loss in relation to the final menstrual period in a multiethnic cohort: results from the study of women’s health across the nation (SWAN). J Bone Miner Res 27(1):111–118. https://doi.org/10.1002/jbmr.534
Zanker J, Sim M, Anderson K, Balogun S, Brennan-Olsen SL, Dent E et al (2022) Consensus guidelines for sarcopenia prevention, diagnosis and management in Australia and New Zealand. J Cachexia Sarcopenia Muscle. https://doi.org/10.1002/jcsm.13115
Article PubMed PubMed Central Google Scholar
Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S et al (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25(10):2359–2381. https://doi.org/10.1007/s00198-014-2794-2
Article CAS PubMed PubMed Central Google Scholar
Kanis JA, Melton LJ III, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9(8):1137–1141
Article CAS PubMed Google Scholar
Briggs AM, Cross MJ, Hoy DG, Sanchez-Riera L, Blyth FM, Woolf AD et al (2016) Musculoskeletal health conditions represent a global threat to healthy aging: a report for the 2015 World Health Organization world report on ageing and health. Gerontologist 56(Suppl 2):S243–S255. https://doi.org/10.1093/geront/gnw002
Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV et al (2006) The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci 61(10):1059–1064. https://doi.org/10.1093/gerona/61.10.1059
Kirk B, Zanker J, Duque G (2020) Osteosarcopenia: epidemiology, diagnosis, and treatment-facts and numbers. J Cachexia Sarcopenia Muscle 11(3):609–618. https://doi.org/10.1002/jcsm.12567
Article PubMed PubMed Central Google Scholar
Shimada H, Suzuki T, Doi T, Lee S, Nakakubo S, Makino K et al (2023) Impact of osteosarcopenia on disability and mortality among Japanese older adults. J Cachexia Sarcopenia Muscle. https://doi.org/10.1002/jcsm.13209
Article PubMed PubMed Central Google Scholar
Atlihan R, Kirk B, Duque G (2021) Non-pharmacological interventions in osteosarcopenia: a systematic review. J Nutr Health Aging 25(1):25–32. https://doi.org/10.1007/s12603-020-1537-7
Article CAS PubMed Google Scholar
Kirk B, Feehan J, Lombardi G, Duque G (2020) Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr Osteoporos Rep 18(4):388–400. https://doi.org/10.1007/s11914-020-00599-y
Scott D, Johansson J, McMillan LB, Ebeling PR, Nordstrom P, Nordstrom A (2019) Associations of sarcopenia and its components with bone structure and incident falls in Swedish older adults. Calcif Tissue Int 105(1):26–36. https://doi.org/10.1007/s00223-019-00540-1
Article CAS PubMed Google Scholar
Kirk B, Phu S, Brennan-Olsen SL, Bani Hassan E, Duque G (2020) Associations between osteoporosis, the severity of sarcopenia and fragility fractures in community-dwelling older adults. Eur Geriatr Med 11(3):443–450. https://doi.org/10.1007/s41999-020-00301-6
Avin KG, Bloomfield SA, Gross TS, Warden SJ (2015) Biomechanical aspects of the muscle–bone interaction. Curr Osteoporos Rep 13(1):1–8. https://doi.org/10.1007/s11914-014-0244-x
Article PubMed PubMed Central Google Scholar
Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280(17):4294–4314. https://doi.org/10.1111/febs.12253
Article CAS PubMed Google Scholar
Ehrlich P, Lanyon L (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13(9):688–700. https://doi.org/10.1007/s001980200095
Article CAS PubMed Google Scholar
Bodine SC (2013) Disuse-induced muscle wasting. Int J Biochem Cell Biol 45(10):2200–2208. https://doi.org/10.1016/j.biocel.2013.06.011
Article CAS PubMed Google Scholar
Rittweger J, Frost HM, Schiessl H, Ohshima H, Alkner B, Tesch P et al (2005) Muscle atrophy and bone loss after 90 days’ bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Bone 36(6):1019–1029. https://doi.org/10.1016/j.bone.2004.11.014
Pierre N, Appriou Z, Gratas-Delamarche A, Derbré F (2016) From physical inactivity to immobilization: dissecting the role of oxidative stress in skeletal muscle insulin resistance and atrophy. Free Radic Biol Med 98:197–207. https://doi.org/10.1016/j.freeradbiomed.2015.12.028
Article CAS PubMed Google Scholar
Juhl OJ, Buettmann EG, Friedman MA, DeNapoli RC, Hoppock GA, Donahue HJ (2021) Update on the effects of microgravity on the musculoskeletal system. NPJ Microgravity 7(1):28. https://doi.org/10.1038/s41526-021-00158-4
Article CAS PubMed PubMed Central Google Scholar
Lu TW, Taylor SJ, O’Connor JJ, Walker PS (1997) Influence of muscle activity on the forces in the femur: an in vivo study. J Biomech 30(11–12):1101–1106. https://doi.org/10.1016/s0021-9290(97)00090-0
Article CAS PubMed Google Scholar
Skerry TM (2008) The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys 473(2):117–123. https://doi.org/10.1016/j.abb.2008.02.028
Article CAS PubMed Google Scholar
Sugiyama T, Price JS, Lanyon LE (2010) Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones. Bone 46(2):314–321. https://doi.org/10.1016/j.bone.2009.08.054
Article PubMed PubMed Central Google Scholar
Gross TS, Poliachik SL, Prasad J, Bain SD (2010) The effect of muscle dysfunction on bone mass and morphology. J Musculoskelet Neuronal Interact 10(1):25–34
Dudley-Javoroski S, Shields RK (2008) Muscle and bone plasticity after spinal cord injury: review of adaptations to disuse and to electrical muscle stimulation. J Rehabil Res Dev 45(2):283. https://doi.org/10.1682/jrrd.2007.02.0031
Article PubMed PubMed Central Google Scholar
Elefteriou F (2008) Regulation of bone remodeling by the central and peripheral nervous system. Arch Biochem Biophys 473(2):231–236. https://doi.org/10.1016/j.abb.2008.03.016
Article CAS PubMed PubMed Central Google Scholar
Poliachik SL, Bain SD, Threet D, Huber P, Gross TS (2010) Transient muscle paralysis disrupts bone homeostasis by rapid degradation of bone morphology. Bone 46(1):18–23. https://doi.org/10.1016/j.bone.2009.10.025
Manske SL, Boyd SK, Zernicke RF (2010) Muscle and bone follow similar temporal patterns of recovery from muscle-induced disuse due to botulinum toxin injection. Bone 46(1):24–31. https://doi.org/10.1016/j.bone.2009.10.016
Article CAS PubMed Google Scholar
Pickett A, O’Keeffe R, Judge A, Dodd S (2008) The in vivo rat muscle force model is a reliable and clinically relevant test of consistency among botulinum toxin preparations. Toxicon 52(3):455–464. https://doi.org/10.1016/j.toxicon.2008.06.021
Article CAS PubMed Google Scholar
Ma J, Elsaidi GA, Smith TL, Walker FO, Tan KH, Martin E et al (2004) Time course of recovery of juvenile skeletal muscle after botulinum toxin A injection: an animal model study. Am J Phys Med Rehabil 83(10):774–780; quiz 81–83. https://doi.org/10.1097/01.phm.0000137315.17214.93
Rubin CT, Lanyon LE (1987) Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone. J Orthop Res 5(2):300–310. https://doi.org/10.1002/jor.1100050217
Article CAS PubMed Google Scholar
O’connor J, Lanyon L, MacFie H (1982) The influence of strain rate on adaptive bone remodelling. J Biomech 15(10):767–781. https://doi.org/10.1016/0021-9290(82)90092-6
Article CAS PubMed Google Scholar
Lanyon LE, Rubin C (1984) Static vs dynamic loads as an influence on bone remodelling. J Biomech 17(12):897–905. https://doi.org/10.1016/0021-9290(84)90003-4
Comments (0)