Binas S, Knyrim M, Hupfeld J, Kloeckner U, Rabe S, Mildenberger S, Quarch K, Stratz N, Misiak D, Gekle M, Grossmann C, Schreier B (2020) miR-221 and – 222 target CACNA1C and KCNJ5 leading to altered cardiac ion channel expression and current density. Cell Mol Life Sci 77:903–918. https://doi.org/10.1007/s00018-019-03217-y
Article CAS PubMed Google Scholar
Correia De Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M (2019) Deciphering miRNAs’ Action through miRNA Editing. Int J Mol Sci 20. https://doi.org/10.3390/ijms20246249
Costa ES, Kurc MC, Drozdz S, Cortez-Dias A N, and, Enguita FJ (2018) The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases. Acta Pharmacol Sin 39:1085–1099. https://doi.org/10.1038/aps.2018.35
Article CAS PubMed PubMed Central Google Scholar
Das S, Mondal A, Samanta J, Chakraborty S, Sengupta A (2021) Unfolded protein response during cardiovascular disorders: a tilt towards pro-survival and cellular homeostasis. Mol Cell Biochem 476:4061–4080. https://doi.org/10.1007/s11010-021-04223-0
Article CAS PubMed Google Scholar
Han D, Gao Q, Cao F (2017) Long noncoding RNAs (LncRNAs) - the dawning of a new treatment for cardiac hypertrophy and heart failure. Biochim Biophys Acta Mol Basis Dis 1863:2078–2084. https://doi.org/10.1016/j.bbadis.2017.02.024
Article CAS PubMed Google Scholar
Hetz C, Zhang K, Kaufman RJ (2020) Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 21:421–438. https://doi.org/10.1038/s41580-020-0250-z
Article CAS PubMed PubMed Central Google Scholar
Lai Y, He S, Ma L, Lin H, Ren B, Ma J, Zhu X, Zhuang S (2017) HOTAIR functions as a competing endogenous RNA to regulate PTEN expression by inhibiting miR-19 in cardiac hypertrophy. Mol Cell Biochem 432:179–187. https://doi.org/10.1007/s11010-017-3008-y
Article CAS PubMed Google Scholar
Li RJ, He KL, Li X, Wang LL, Liu CL, He YY (2015) Salubrinal protects cardiomyocytes against apoptosis in a rat myocardial infarction model via suppressing the dephosphorylation of eukaryotic translation initiation factor 2alpha. Mol Med Rep 12:1043–1049. https://doi.org/10.3892/mmr.2015.3508
Article CAS PubMed PubMed Central Google Scholar
Liu L, An X, Li Z, Song Y, Li L, Zuo S, Liu N, Yang G, Wang H, Cheng X, Zhang Y, Yang X, Wang J (2016) The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 111:56–65. https://doi.org/10.1093/cvr/cvw078
Article CAS PubMed Google Scholar
Liu Y, Song JW, Lin JY, Miao R, Zhong JC (2020) Roles of MicroRNA-122 in Cardiovascular Fibrosis and Related Diseases. Cardiovasc Toxicol 20:463–473. https://doi.org/10.1007/s12012-020-09603-4
Article CAS PubMed PubMed Central Google Scholar
Liu S, Sun WC, Zhang YL, Lin QY, Liao JW, Song GR, Ma XL, Li HH, Zhang B (2021) SOCS3 negatively regulates Cardiac Hypertrophy via Targeting GRP78-Mediated ER stress during pressure overload. Front Cell Dev Biol 9:629932. https://doi.org/10.3389/fcell.2021.629932
Article PubMed PubMed Central Google Scholar
Lu P, Ding F, Xiang YK, Hao L, Zhao M (2022) Noncoding RNAs in Cardiac Hypertrophy and Heart failure. Cells 11. https://doi.org/10.3390/cells11050777
Nakamura M, Sadoshima J (2018) Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 15:387–407. https://doi.org/10.1038/s41569-018-0007-y
Article CAS PubMed Google Scholar
Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 10:173–194. https://doi.org/10.1146/annurev-pathol-012513-104649
Article CAS PubMed Google Scholar
Omidkhoda N, Wallace Hayes A, Reiter RJ, Karimi G (2019) The role of MicroRNAs on endoplasmic reticulum stress in myocardial ischemia and cardiac hypertrophy. Pharmacol Res 150:104516. https://doi.org/10.1016/j.phrs.2019.104516
Article CAS PubMed Google Scholar
Pan W, Zhong Y, Cheng C, Liu B, Wang L, Li A, Xiong L, Liu S (2013) MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy. PLoS ONE 8:e53950. https://doi.org/10.1371/journal.pone.0053950
Article CAS PubMed PubMed Central Google Scholar
Panni S, Lovering RC, Porras P, Orchard S (2020) Non-coding RNA regulatory networks. Biochim Biophys Acta Gene Regul Mech 1863:194417. https://doi.org/10.1016/j.bbagrm.2019.194417
Article CAS PubMed Google Scholar
Primeau JO, Armanious GP, Fisher ME, Young HS (2018) The SarcoEndoplasmic Reticulum Calcium ATPase. Subcell Biochem 87:229–258. https://doi.org/10.1007/978-981-10-7757-9_8
Article CAS PubMed Google Scholar
Qiannan E, Wang C, Gu X, Gan X, Zhang X, Wang S, Ma J, Zhang L, Zhang R, Su L (2020) Competitive endogenous RNA (ceRNA) regulation network of lncRNA-miRNA-mRNA during the process of the nickel-induced steroidogenesis disturbance in rat Leydig cells. Toxicol In Vitro 63:104721. https://doi.org/10.1016/j.tiv.2019.104721
Rani S, Sreenivasaiah PK, Cho C, Kim DH (2017) Salubrinal alleviates pressure Overload-Induced Cardiac Hypertrophy by inhibiting endoplasmic reticulum stress pathway. Mol Cells 40:66–72. https://doi.org/10.14348/molcells.2017.2259
Article CAS PubMed PubMed Central Google Scholar
Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166. https://doi.org/10.1146/annurev-biochem-051410-092902
Article CAS PubMed Google Scholar
Rosenbaum AN, Agre KE, Pereira NL (2020) Genetics of dilated cardiomyopathy: practical implications for heart failure management. Nat Rev Cardiol 17:286–297. https://doi.org/10.1038/s41569-019-0284-0
Shen T, Li Y, Chen Z, Liang S, Qiu Y, Zhu L, Ba G, Lu G, Qiu L (2020) Activating transcription factor 6 (ATF6) negatively regulates Polo-like kinase 4 expression via recruiting C/EBPbeta to the upstream-promoter during ER stress. Biochem Biophys Acta Gene Regul Mech 1863:194488. https://doi.org/10.1016/j.bbagrm.2020.194488
Shimizu I, Minamino T (2016) Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 97:245–262. https://doi.org/10.1016/j.yjmcc.2016.06.001
Article CAS PubMed Google Scholar
Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344–352. https://doi.org/10.1038/nature12986
Article CAS PubMed PubMed Central Google Scholar
Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP (2012) hERG K(+) channels: structure, function, and clinical significance. Physiol Rev 92:1393–1478. https://doi.org/10.1152/physrev.00036.2011
Article CAS PubMed Google Scholar
Viereck J, Buhrke A, Foinquinos A, Chatterjee S, Kleeberger JA, Xiao K, Janssen-Peters H, Batkai S, Ramanujam D, Kraft T, Cebotari S, Gueler F, Beyer AM, Schmitz J, Brasen JH, Schmitto JD, Gyongyosi M, Loser A, Hirt MN, Eschenhagen T, Engelhardt S, Bar C, Thum T (2020) Targeting muscle-enriched long non-coding RNA H19 reverses pathological cardiac hypertrophy. Eur Heart J 41:3462–3474. https://doi.org/10.1093/eurheartj/ehaa519
Article CAS PubMed PubMed Central Google Scholar
Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M, Dittrich M, Maetzig T, Zimmer K, Remke J, Just A, Fendrich J, Scherf K, Bolesani E, Schambach A, Weidemann F, Zweigerdt R, De Windt LJ, Engelhardt S, Dandekar T, Batkai S, Thum T (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8:326ra322. https://doi.org/10.1126/scitranslmed.aaf1475
Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF (2014) The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114:1377–1388. https://doi.org/10.1161/CIRCRESAHA.114.302476
Article CAS PubMed Google Scholar
Wang Z, Zhang XJ, Ji YX, Zhang P, Deng KQ, Gong J, Ren S, Wang X, Chen I, Wang H, Gao C, Yokota T, Ang YS, Li S, Cass A, Vondriska TM, Li G, Deb A, Srivastava D, Yang HT, Xiao X, Li H, Wang Y (2016) The long noncoding RNA chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 22:1131–1139. https://doi.org/10.1038/nm.4179
Article CAS PubMed PubMed Central Google Scholar
Xiang M, Yang F, Zhou Y, Li W, Zou Y, Ye P, Zhu L, Wang PX, Chen M (2021) LITAF acts as a novel regulator for pathological cardiac hypertrophy. J Mol Cell Cardiol 156:82–94. https://doi.org/10.1016/j.yjmcc.2021.03.012
Article CAS PubMed Google Scholar
Xiao L, Gu Y, Sun Y, Chen J, Wang X, Zhang Y, Gao L, Li L (2019) The long noncoding RNA XIST regulates cardiac hypertrophy by targeting miR-101. J Cell Physiol 234:13680–13692. https://doi.org/10.1002/jcp.28047
Article CAS PubMed Google Scholar
Xu Y, Luo Y, Liang C, Zhang T (2020) LncRNA-Mhrt regulates cardiac hypertrophy by modulating the miR-145a-5p/KLF4/myocardin axis. J Mol Cell Cardiol 139:47–61. https://doi.org/10.1016/j.yjmcc.2019.12.013
Article CAS PubMed Google Scholar
Yang KC, Foeger NC, Marionneau C, Jay PY, Mcmullen JR, Nerbonne JM (2010) Homeostatic regulation of electrical excitability in physiological cardiac hypertrophy. J Physiol 588:5015–5032. https://doi.org/10.1113/jphysiol.2010.197418
Comments (0)