Dendritic pathology and overexpression of MAP2 in Purkinje cells from mice inoculated with rabies virus

Bernhardt R, Huber G, Matus A (1985) Differences in the developmental patterns of three microtubule-associated proteins in the rat cerebellum. J Neurosci 5(4):977–991. https://doi.org/10.1523/JNEUROSCI.05-04-00977.1985

Article  CAS  PubMed  PubMed Central  Google Scholar 

Binley KE, Ng WS, Tribble JR, Song B, Morgan JE (2014) Sholl analysis: a quantitative comparison of semi-automated methods. J Neurosci Methods 225:65–70. https://doi.org/10.1016/j.jneumeth.2014.01.017

Article  PubMed  Google Scholar 

Conde C, Cáceres A (2009) Microtubule assembly, organization, and dynamics in axons and dendrites. Nat Rev Neurosci 10(5):319–332. https://doi.org/10.1038/nrn2631

Article  CAS  PubMed  Google Scholar 

De Camilli P, Miller PE, Navone F, Theurkauf WE, Vallee RB (1984) Distribution of microtubule-associated protein 2 in the nervous system of the rat studied by immunofluorescence. Neuroscience 11(4):817–846. https://doi.org/10.1016/0306-4522(84)90194-5

Article  PubMed  Google Scholar 

DeGiosio RA, Grubisha MJ, MacDonald ML, McKinney BC, Camacho CJ, Sweet RA (2022) More than a marker: potential pathogenic functions of MAP2. Front Mol Neurosci 15:974890. https://doi.org/10.3389/fnmol.2022.974890

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Stefano G, Casoli T, Fattoretti P, Gracciotti N, Solazzi M, Bertoni-Freddari C (2001) Distribution of MAP2 in hippocampus and cerebellum of young and old rats by quantitative immunohistochemistry. J Histochem Cytochem 49(8):1065–1066. https://doi.org/10.1177/002215540104900818

Article  PubMed  Google Scholar 

Field KJ, White WJ, Lang CM (1993) Anaesthetic effects of chloral hydrate, pentobarbitone and urethane in adult male rats. Lab Anim 7(3):258–269. https://doi.org/10.1258/002367793780745471

Article  Google Scholar 

Gibb R, Kolb B (1998) A method for vibratome sectioning of golgi-Cox-stained whole rat brain. J Neurosci Methods 79(1):1–4. https://doi.org/10.1016/s0165-0270(97)00163-5

Article  CAS  PubMed  Google Scholar 

Golgi C (1894) Ueber die pathologische histologie Der Rabies Experimentalis. Berliner Klinische Wochenschrift 31:325–331

Google Scholar 

Hurtado AP, Rengifo AC, Torres-Fernández O (2015) Immunohistochemical overexpression of MAP-2 in the cerebral cortex of rabies-infected mice. Int J Morphol 33(2):465–470. https://doi.org/10.4067/S0717-95022015000200010

Article  Google Scholar 

Iwasaki Y, Tobita M (2002) Pathology. In: Jackson AC, Wunner WH (eds) Rabies. Academic, San Diego, pp 283–307

Google Scholar 

Jackson AC, Ye H, Ridaura-Sanz C, Lopez-Corella E (2001) Quantitative study of the infection in brain neurons in human rabies. J Med Virol 65(3):614–618. https://doi.org/10.1002/jmv.2080

Article  CAS  PubMed  Google Scholar 

Jagadha V, Becker LE (1989) Dendritic pathology: an overview of golgi studies in man. Can J Neurol Sci 16(1):41–50. https://doi.org/10.1017/s0317167100028493

Article  CAS  PubMed  Google Scholar 

Johnson G, Jope R (1992) The role of microtubule-associated protein 2 (MAP-2) in neuronal growth, plasticity, and degeneration. J Neurosci Res 33(4):505–512. https://doi.org/10.1002/jnr.490330402

Article  CAS  PubMed  Google Scholar 

Kaufmann WE, MacDonald SM, Altamura CR (2000) Dendritic cytoskeletal protein expression in mental retardation: an immunohistochemical study of the neocortex in Rett syndrome. Cereb Cortex 10(10):992–1004. https://doi.org/10.1093/cercor/10.10.992

Article  CAS  PubMed  Google Scholar 

Koleske AJ (2013) Molecular mechanisms of dendrite stability. Nat Rev Neurosci 14(8):536–550. https://doi.org/10.1038/nrn3486

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lamprea NP, Ortega LM, Santamaría G, Sarmiento L, Torres-Fernández O (2010) Production and evaluation of an antiserum for immunohistochemical detection of Rabies virus in aldehyde fixed brain tissues. Biomédica 30(1):146–151. https://doi.org/10.7705/biomedica.v30i1.162

Article  PubMed  Google Scholar 

Levine ND, Rademacher DJ, Collier TJ, O’Malley JA, Kells AP, San Sebastian W, Bankiewicz KS, Steece-Collier K (2013) Advances in thin tissue golgi-Cox impregnation: fast, reliable methods for multi-assay analyses in rodent and non-human primate brain. J Neurosci Methods 213(2):214–227. https://doi.org/10.1016/j.jneumeth.2012.12.001

Article  PubMed  PubMed Central  Google Scholar 

Li X, Sarmento L, Fu Z (2005) Degeneration of neuronal processes after infection with pathogenic, but not attenuated, rabies viruses. J Virol 79(15):10063–10068. https://doi.org/10.1128/JVI.79.15.10063-10068.2005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mehta S, Sreenivasamurthy S, Banerjee S, Mukherjee S, Prasad K, Chowdhary A (2016) Pathway analysis of proteomics profiles in rabies infection: towards future biomarkers? OMICS 20(2):97–109. https://doi.org/10.1089/omi.2015.0137

Article  CAS  PubMed  Google Scholar 

Monroy-Gómez J, Santamaría G, Torres-Fernández O (2018) Overexpression of MAP2 and NF-H associated with dendritic pathology in the spinal cord of mice infected with rabies virus. Viruses 10(3):112. https://doi.org/10.3390/v10030112

Article  CAS  PubMed  PubMed Central  Google Scholar 

Monroy-Gómez J, Santamaría G, Sarmiento L, Torres-Fernández O (2020) Effect of postmortem degradation on the preservation of viral particles and rabies antigens in mice brains. Light and electron microscopic study. Viruses 12(9):938. https://doi.org/10.3390/v12090938

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naizaque JR, Torres-Fernández O (2016) La inmunorreactividad a calbindina en células de Purkinje del cerebelo de ratones no es afectada por la infección con virus de la rabia. Biosalud 15(2):9–19. https://doi.org/10.17151/biosa.2016.15.2.2

Article  Google Scholar 

Niinobe M, Maeda N, Ino H, Mikoshiba K (1988) Characterization of microtubule-associated protein 2 from mouse brain and its localization in the cerebellar cortex. J Neurochem 51(4):1132–1139. https://doi.org/10.1111/j.1471-4159.1988.tb03078.x

Article  CAS  PubMed  Google Scholar 

Portilho DM, Persson R, Arhel N (2016) Role of non-motile microtubule-associated proteins in virus trafficking. Biomol Concepts 7(5–6):283–292. https://doi.org/10.1515/bmc-2016-0018

Article  CAS  PubMed  Google Scholar 

Rossini L, De Santis D, Mauceri RR, Tesoriero C, Bentivoglio M, Maderna E, Maiorana A, Deleo F, de Curtis M, Tringali G, Cossu M, Tumminelli G, Bramerio M, Spreafico R, Tassi L, Garbelli R (2021) Dendritic pathology, spine loss and synaptic reorganization in human cortex from epilepsy patients. Brain 144(1):251–265. https://doi.org/10.1093/brain/awaa387

Article  PubMed  Google Scholar 

Scott CA, Rossiter JP, Andrew RD, Jackson AC (2008) Structural abnormalities in neurons are sufficient to explain the clinical disease and fatal outcome of experimental rabies in yellow fluorescent protein–expressing transgenic mice. J Virol 82(1):513–521. https://doi.org/10.1128/JVI.01677-07

Article  CAS  PubMed  Google Scholar 

Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(4):387–406. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1244622/

CAS  PubMed  PubMed Central  Google Scholar 

Song Y, Hou J, Qiao B, Li Y, Xu Y, Duan M (2013) Street Rabies virus causes dendritic injury and F-actin depolymerization in the hippocampus. J Gen Virol 94(2):276–283. https://doi.org/10.1099/vir.0.047480-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sundaramoorthy V, Green D, Locke K, O’Brien CM, Dearnley M, Bingham J (2020) Novel role of SARM1 mediated axonal degeneration in the pathogenesis of rabies. PLoS Pathog 16(2):e1008343. https://doi.org/10.1371/journal.ppat.1008343

Comments (0)

No login
gif