Bernhardt R, Huber G, Matus A (1985) Differences in the developmental patterns of three microtubule-associated proteins in the rat cerebellum. J Neurosci 5(4):977–991. https://doi.org/10.1523/JNEUROSCI.05-04-00977.1985
Article CAS PubMed PubMed Central Google Scholar
Binley KE, Ng WS, Tribble JR, Song B, Morgan JE (2014) Sholl analysis: a quantitative comparison of semi-automated methods. J Neurosci Methods 225:65–70. https://doi.org/10.1016/j.jneumeth.2014.01.017
Conde C, Cáceres A (2009) Microtubule assembly, organization, and dynamics in axons and dendrites. Nat Rev Neurosci 10(5):319–332. https://doi.org/10.1038/nrn2631
Article CAS PubMed Google Scholar
De Camilli P, Miller PE, Navone F, Theurkauf WE, Vallee RB (1984) Distribution of microtubule-associated protein 2 in the nervous system of the rat studied by immunofluorescence. Neuroscience 11(4):817–846. https://doi.org/10.1016/0306-4522(84)90194-5
DeGiosio RA, Grubisha MJ, MacDonald ML, McKinney BC, Camacho CJ, Sweet RA (2022) More than a marker: potential pathogenic functions of MAP2. Front Mol Neurosci 15:974890. https://doi.org/10.3389/fnmol.2022.974890
Article CAS PubMed PubMed Central Google Scholar
Di Stefano G, Casoli T, Fattoretti P, Gracciotti N, Solazzi M, Bertoni-Freddari C (2001) Distribution of MAP2 in hippocampus and cerebellum of young and old rats by quantitative immunohistochemistry. J Histochem Cytochem 49(8):1065–1066. https://doi.org/10.1177/002215540104900818
Field KJ, White WJ, Lang CM (1993) Anaesthetic effects of chloral hydrate, pentobarbitone and urethane in adult male rats. Lab Anim 7(3):258–269. https://doi.org/10.1258/002367793780745471
Gibb R, Kolb B (1998) A method for vibratome sectioning of golgi-Cox-stained whole rat brain. J Neurosci Methods 79(1):1–4. https://doi.org/10.1016/s0165-0270(97)00163-5
Article CAS PubMed Google Scholar
Golgi C (1894) Ueber die pathologische histologie Der Rabies Experimentalis. Berliner Klinische Wochenschrift 31:325–331
Hurtado AP, Rengifo AC, Torres-Fernández O (2015) Immunohistochemical overexpression of MAP-2 in the cerebral cortex of rabies-infected mice. Int J Morphol 33(2):465–470. https://doi.org/10.4067/S0717-95022015000200010
Iwasaki Y, Tobita M (2002) Pathology. In: Jackson AC, Wunner WH (eds) Rabies. Academic, San Diego, pp 283–307
Jackson AC, Ye H, Ridaura-Sanz C, Lopez-Corella E (2001) Quantitative study of the infection in brain neurons in human rabies. J Med Virol 65(3):614–618. https://doi.org/10.1002/jmv.2080
Article CAS PubMed Google Scholar
Jagadha V, Becker LE (1989) Dendritic pathology: an overview of golgi studies in man. Can J Neurol Sci 16(1):41–50. https://doi.org/10.1017/s0317167100028493
Article CAS PubMed Google Scholar
Johnson G, Jope R (1992) The role of microtubule-associated protein 2 (MAP-2) in neuronal growth, plasticity, and degeneration. J Neurosci Res 33(4):505–512. https://doi.org/10.1002/jnr.490330402
Article CAS PubMed Google Scholar
Kaufmann WE, MacDonald SM, Altamura CR (2000) Dendritic cytoskeletal protein expression in mental retardation: an immunohistochemical study of the neocortex in Rett syndrome. Cereb Cortex 10(10):992–1004. https://doi.org/10.1093/cercor/10.10.992
Article CAS PubMed Google Scholar
Koleske AJ (2013) Molecular mechanisms of dendrite stability. Nat Rev Neurosci 14(8):536–550. https://doi.org/10.1038/nrn3486
Article CAS PubMed PubMed Central Google Scholar
Lamprea NP, Ortega LM, Santamaría G, Sarmiento L, Torres-Fernández O (2010) Production and evaluation of an antiserum for immunohistochemical detection of Rabies virus in aldehyde fixed brain tissues. Biomédica 30(1):146–151. https://doi.org/10.7705/biomedica.v30i1.162
Levine ND, Rademacher DJ, Collier TJ, O’Malley JA, Kells AP, San Sebastian W, Bankiewicz KS, Steece-Collier K (2013) Advances in thin tissue golgi-Cox impregnation: fast, reliable methods for multi-assay analyses in rodent and non-human primate brain. J Neurosci Methods 213(2):214–227. https://doi.org/10.1016/j.jneumeth.2012.12.001
Article PubMed PubMed Central Google Scholar
Li X, Sarmento L, Fu Z (2005) Degeneration of neuronal processes after infection with pathogenic, but not attenuated, rabies viruses. J Virol 79(15):10063–10068. https://doi.org/10.1128/JVI.79.15.10063-10068.2005
Article CAS PubMed PubMed Central Google Scholar
Mehta S, Sreenivasamurthy S, Banerjee S, Mukherjee S, Prasad K, Chowdhary A (2016) Pathway analysis of proteomics profiles in rabies infection: towards future biomarkers? OMICS 20(2):97–109. https://doi.org/10.1089/omi.2015.0137
Article CAS PubMed Google Scholar
Monroy-Gómez J, Santamaría G, Torres-Fernández O (2018) Overexpression of MAP2 and NF-H associated with dendritic pathology in the spinal cord of mice infected with rabies virus. Viruses 10(3):112. https://doi.org/10.3390/v10030112
Article CAS PubMed PubMed Central Google Scholar
Monroy-Gómez J, Santamaría G, Sarmiento L, Torres-Fernández O (2020) Effect of postmortem degradation on the preservation of viral particles and rabies antigens in mice brains. Light and electron microscopic study. Viruses 12(9):938. https://doi.org/10.3390/v12090938
Article CAS PubMed PubMed Central Google Scholar
Naizaque JR, Torres-Fernández O (2016) La inmunorreactividad a calbindina en células de Purkinje del cerebelo de ratones no es afectada por la infección con virus de la rabia. Biosalud 15(2):9–19. https://doi.org/10.17151/biosa.2016.15.2.2
Niinobe M, Maeda N, Ino H, Mikoshiba K (1988) Characterization of microtubule-associated protein 2 from mouse brain and its localization in the cerebellar cortex. J Neurochem 51(4):1132–1139. https://doi.org/10.1111/j.1471-4159.1988.tb03078.x
Article CAS PubMed Google Scholar
Portilho DM, Persson R, Arhel N (2016) Role of non-motile microtubule-associated proteins in virus trafficking. Biomol Concepts 7(5–6):283–292. https://doi.org/10.1515/bmc-2016-0018
Article CAS PubMed Google Scholar
Rossini L, De Santis D, Mauceri RR, Tesoriero C, Bentivoglio M, Maderna E, Maiorana A, Deleo F, de Curtis M, Tringali G, Cossu M, Tumminelli G, Bramerio M, Spreafico R, Tassi L, Garbelli R (2021) Dendritic pathology, spine loss and synaptic reorganization in human cortex from epilepsy patients. Brain 144(1):251–265. https://doi.org/10.1093/brain/awaa387
Scott CA, Rossiter JP, Andrew RD, Jackson AC (2008) Structural abnormalities in neurons are sufficient to explain the clinical disease and fatal outcome of experimental rabies in yellow fluorescent protein–expressing transgenic mice. J Virol 82(1):513–521. https://doi.org/10.1128/JVI.01677-07
Article CAS PubMed Google Scholar
Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(4):387–406. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1244622/
CAS PubMed PubMed Central Google Scholar
Song Y, Hou J, Qiao B, Li Y, Xu Y, Duan M (2013) Street Rabies virus causes dendritic injury and F-actin depolymerization in the hippocampus. J Gen Virol 94(2):276–283. https://doi.org/10.1099/vir.0.047480-0
Article CAS PubMed PubMed Central Google Scholar
Sundaramoorthy V, Green D, Locke K, O’Brien CM, Dearnley M, Bingham J (2020) Novel role of SARM1 mediated axonal degeneration in the pathogenesis of rabies. PLoS Pathog 16(2):e1008343. https://doi.org/10.1371/journal.ppat.1008343
Comments (0)