How protons pave the way to aggressive cancers

Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956). Warburg presents his hypothesis for cancer cell transformation based on the notion that transitioning away from respiration enables cells to shed the constraints normally imposed by O2supply.

Article  CAS  PubMed  Google Scholar 

Griffiths, J. R. Are cancer cells acidic? Br. J. Cancer 64, 425–427 (1991).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vaupel, P., Kallinowski, F. & Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465 (1989).

CAS  PubMed  Google Scholar 

Rotin, D., Wan, P., Grinstein, S. & Tannock, I. Cytotoxicity of compounds that interfere with the regulation of intracellular pH: a potential new class of anticancer drugs. Cancer Res. 47, 1497–1504 (1987).

CAS  PubMed  Google Scholar 

Tannock, I. F. & Rotin, D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 49, 4373–44384 (1989).

CAS  PubMed  Google Scholar 

Armitage, P. & Doll, R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 8, 1–12 (1954).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

Article  CAS  PubMed  Google Scholar 

Singleton, D. C., Macann, A. & Wilson, W. R. Therapeutic targeting of the hypoxic tumour microenvironment. Nat. Rev. Clin. Oncol. 18, 751–772 (2021).

Article  PubMed  Google Scholar 

Corbet, C. & Feron, O. Tumour acidosis: from the passenger to the driver’s seat. Nat. Rev. Cancer 17, 577–593 (2017).

Article  CAS  PubMed  Google Scholar 

Pawson, T. & Scott, J. D. Protein phosphorylation in signaling — 50 years and counting. Trends Biochem. Sci. 30, 286–290 (2005).

Article  CAS  PubMed  Google Scholar 

Shvedunova, M. & Akhtar, A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 23, 329–349 (2022).

Article  CAS  PubMed  Google Scholar 

Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 (1997).

Article  CAS  PubMed  Google Scholar 

Sim, A. T. & Scott, J. D. Targeting of PKA, PKC and protein phosphatases to cellular microdomains. Cell Calcium 26, 209–217 (1999).

Article  CAS  PubMed  Google Scholar 

Ubersax, J. A. & Ferrell, J. E. Jr Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell Biol. 8, 530–541 (2007).

Article  CAS  PubMed  Google Scholar 

Monteith, G. R., Prevarskaya, N. & Roberts-Thomson, S. J. The calcium–cancer signalling nexus. Nat. Rev. Cancer 17, 367–380 (2017).

Article  CAS  PubMed  Google Scholar 

Schonichen, A., Webb, B. A., Jacobson, M. P. & Barber, D. L. Considering protonation as a posttranslational modification regulating protein structure and function. Annu. Rev. Biophys. 42, 289–314 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olsson, M. H., Sondergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537 (2011).

Article  CAS  PubMed  Google Scholar 

Flinck, M., Kramer, S. H. & Pedersen, S. F. Roles of pH in control of cell proliferation. Acta Physiol. 223, e13068 (2018).

Article  CAS  Google Scholar 

Casey, J. R., Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11, 50–61 (2010).

Article  CAS  PubMed  Google Scholar 

Ulmschneider, B. et al. Increased intracellular pH is necessary for adult epithelial and embryonic stem cell differentiation. J. Cell Biol. 215, 345–355 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwab, A., Fabian, A., Hanley, P. J. & Stock, C. Role of ion channels and transporters in cell migration. Physiol. Rev. 92, 1865–1913 (2012).

Article  CAS  PubMed  Google Scholar 

Deyev, I. E. et al. Insulin receptor-related receptor as an extracellular alkali sensor. Cell Metab. 13, 679–689 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, L., Hall, C., Li, J., Choi, E. & Bai, X. C. Structural basis of the alkaline pH-dependent activation of insulin receptor-related receptor. Nat. Struct. Mol. Biol. 30, 661–669 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kazyken, D., Lentz, S. I. & Fingar, D. C. Alkaline intracellular pH (pHi) activates AMPK–mTORC2 signaling to promote cell survival during growth factor limitation. J. Biol. Chem. 297, 101100 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi, C. H., Webb, B. A., Chimenti, M. S., Jacobson, M. P. & Barber, D. L. pH sensing by FAK–His58 regulates focal adhesion remodeling. J. Cell Biol. 202, 849–859 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mikhailik, A. et al. A phosphatase activity of Sts-1 contributes to the suppression of TCR signaling. Mol. Cell 27, 486–497 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deegan, B. J., Seldeen, K. L., McDonald, C. B., Bhat, V. & Farooq, A. Binding of the ERα nuclear receptor to DNA is coupled to proton uptake. Biochemistry 49, 5978–5988 (2010).

Article  CAS  PubMed  Google Scholar 

Lundback, T., van Den Berg, S. & Hard, T. Sequence-specific DNA binding by the glucocorticoid receptor DNA-binding domain is linked to a salt-dependent histidine protonation. Biochemistry 39, 8909–8916 (2000).

Article  CAS  PubMed  Google Scholar 

Blane, A. & Fanucchi, S. Effect of pH on the structure and DNA binding of the FOXP2 forkhead domain. Biochemistry 54, 4001–4007 (2015).

Article  CAS  PubMed  Google Scholar 

Mikles, D. C. et al. pH modulates the binding of early growth response protein 1 transcription factor to DNA. FEBS J. 280, 3669–3684 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tencer, A. H. et al. A unique pH-dependent recognition of methylated histone H3K4 by PPS and DIDO. Structure 25, 1530–1539.e3 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rohani, N. et al. Acidification of tumor at stromal boundaries drives transcriptome alterations associated with aggressive phenotypes. Cancer Res. 79, 1952–1966 (2019). The authors show that areas of acidosis are not restricted to hypoxic tumour regions, but overlie highly proliferative and invasive zones at the tumour–stroma interface, reaffirming that acidosis is a distinct feature of the chemical microenvironment.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McBrian, M. A. et al. Histone acetylation regulates intracellular pH. Mol. Cell 49, 310–321 (2013).

Article  CAS  PubMed  Google Scholar 

Chano, T. et al. Tumour-specific metabolic adaptation to acidosis is coupled to epigenetic stability in osteosarcoma cells. Am. J. Cancer Res. 6, 859–875 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Larionova, T. D. et al. Alternative RNA splicing modulates ribosomal composition and determines the spatial phenotype of glioblastoma cells. Nat. Cell Biol. 24, 1541–1557 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robertson, I. M. et al. Elucidation of isoform-dependent pH sensitivity of troponin I by NMR spectroscopy. J. Biol. Chem. 287, 4996–5007 (2012).

Article  CAS  PubMed 

Comments (0)

No login
gif