Cross-priming in cancer immunology and immunotherapy

Wu, R. & Murphy, K. M. DCs at the center of help: origins and evolution of the three-cell-type hypothesis. J. Exp. Med. 219, e20211519 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carbone, F. R. & Heath, W. R. Cross-priming: its beginnings. J. Immunol. 185, 1353–1354 (2010).

Article  CAS  PubMed  Google Scholar 

Sanchez-Paulete, A. R. et al. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Ann. Oncol. 28, xii44–xii55 (2017).

Article  CAS  PubMed  Google Scholar 

Joffre, O. P., Segura, E., Savina, A. & Amigorena, S. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12, 557–569 (2012).

Article  CAS  PubMed  Google Scholar 

Bevan, M. J. Cross-priming. Nat. Immunol. 7, 363–365 (2006).

Article  CAS  PubMed  Google Scholar 

Bevan, M. J. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J. Exp. Med. 143, 1283–1288 (1976). This seminal experimental work by Michael Bevan and colleagues reveals the existence of cross-priming, demonstrating that endogenous professional APCs ought to be able to process and present antigens from other cells to prime cytotoxic T cell responses.

Article  CAS  PubMed  Google Scholar 

Carbone, F. R. & Bevan, M. J. Class I-restricted processing and presentation of exogenous cell-associated antigen in vivo. J. Exp. Med. 171, 377–387 (1990).

Article  CAS  PubMed  Google Scholar 

den Haan, J. M., Lehar, S. M. & Bevan, M. J. CD8+ but not CD8− dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192, 1685–1696 (2000).

Article  Google Scholar 

Steinman, R. M. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137, 1142–1162 (1973).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steinman, R. M. Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol. 30, 1–22 (2012).

Article  CAS  PubMed  Google Scholar 

Anderson, D. A. 3rd, Dutertre, C. A., Ginhoux, F. & Murphy, K. M. Genetic models of human and mouse dendritic cell development and function. Nat. Rev. Immunol. 21, 101–115 (2021).

Article  CAS  PubMed  Google Scholar 

Schreibelt, G. et al. Fully closed and automated enrichment of primary blood dendritic cells for cancer immunotherapy. Methods Cell Biol. 183, 33–50 (2024).

Article  PubMed  Google Scholar 

Cueto, F. J. et al. DNGR-1 limits Flt3L-mediated antitumor immunity by restraining tumor-infiltrating type I conventional dendritic cells. J. Immunother. Cancer 9, e002054 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Schraml, B. U. et al. Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage. Cell 154, 843–858 (2013).

Article  CAS  PubMed  Google Scholar 

Edelson, B. T. et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8alpha+ conventional dendritic cells. J. Exp. Med. 207, 823–836 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heras-Murillo, I., Adan-Barrientos, I., Galan, M., Wculek, S. K. & Sancho, D. Dendritic cells as orchestrators of anticancer immunity and immunotherapy. Nat. Rev. Clin. Oncol. 21, 257–277 (2024).

Article  PubMed  Google Scholar 

Grajales-Reyes, G. E. et al. Batf3 maintains autoactivation of Irf8 for commitment of a CD8alpha+ conventional DC clonogenic progenitor. Nat. Immunol. 16, 708–717 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bagadia, P. et al. An Nfil3-Zeb2-Id2 pathway imposes Irf8 enhancer switching during cDC1 development. Nat. Immunol. 20, 1174–1185 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferris, S. T. et al. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 584, 624–629 (2020). This study highlights the essential role of cDC1 licensing via the CD40–CD40L interaction with CD4±T cells and shows the relevance of this phenomenon for cross-priming CD8±T cells for effective tumour rejection.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tussiwand, R. et al. Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses. Immunity 42, 916–928 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guilliams, M. et al. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45, 669–684 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Binnewies, M. et al. Unleashing type-2 dendritic cells to drive protective antitumor CD4+ T cell immunity. Cell 177, 556–571.e516 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanchez-Paulete, A. R. et al. Cancer immunotherapy with immunomodulatory anti-CD137 and anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov. 6, 71–79 (2016). This study demonstrates that BATF3-dependent cDC1s are required for the efficacy of immunotherapy with PD1 and CD137 monoclonal antibodies.

Article  CAS  PubMed  Google Scholar 

Salmon, H. et al. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44, 924–938 (2016). This study shows that BATF3-dependent cDC1s are crucial for the success of immunotherapy using the immune checkpoint inhibitor anti-PDL1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teijeira, A. et al. Depletion of conventional type-1 dendritic cells in established tumors suppresses immunotherapy efficacy. Cancer Res. 82, 4373–4385 (2022). First evidence that upon depletion of cDC1s in XCR1-DTR mice, the efficacy of various immunotherapy approaches (immune checkpoint inhibitors, CD137 agonists and adoptive T cell therapy) are reduced. Furthermore, depletion of cDC1s gives rise to immune-desert TMEs.

Article  CAS  PubMed  Google Scholar 

Ohara, R. A. & Murphy, K. M. The evolving biology of cross-presentation. Semin. Immunol. 66, 101711 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cabeza-Cabrerizo, M. et al. Dendritic cells revisited. Annu. Rev. Immunol. 39, 131–166 (2021).

Article  CAS  PubMed  Google Scholar 

Colbert, J. D., Cruz, F. M. & Rock, K. L. Cross-presentation of exogenous antigens on MHC I molecules. Curr. Opin. Immunol. 64, 1–8 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blander, J. M., Yee Mon, K. J., Jha, A. & Roycroft, D. The show and tell of cross-presentation. Adv. Immunol. 159, 33–114 (2023).

Article  CAS  PubMed  Google Scholar 

Mellman, I., Chen, D. S., Powles, T. & Turley, S. J. The cancer-immunity cycle: indication, genotype, and immunotype. Immunity 56, 2188–2205 (2023).

Article  CAS  PubMed  Google Scholar 

Cook, S. J. et al. Differential chemokine receptor expression and usage by pre-cDC1 and pre-cDC2. Immunol. Cell Biol. 96, 1131–1139 (2018).

Comments (0)

No login
gif