Bergers, G. & Fendt, S. M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 21, 162–180 (2021).
Article CAS PubMed PubMed Central Google Scholar
Berenblum, I. The cocarcinogenic action of croton resin. Cancer Res. 1, 44–48 (1941).
Kawai, T., Autieri, M. V. & Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 320, C375–C391 (2021).
Article CAS PubMed Google Scholar
Kaaks, R. & Lukanova, A. Energy balance and cancer: the role of insulin and insulin-like growth factor-I. Proc. Nutr. Soc. 60, 91–106 (2001).
Article CAS PubMed Google Scholar
Morigny, P., Boucher, J., Arner, P. & Langin, D. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat. Rev. Endocrinol. 17, 276–295 (2021).
Article CAS PubMed Google Scholar
Cox, A. J., West, N. P. & Cripps, A. W. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 3, 207–215 (2015).
Article CAS PubMed Google Scholar
Van Hul, M. & Cani, P. D. The gut microbiota in obesity and weight management: microbes as friends or foe? Nat. Rev. Endocrinol. 19, 258–271 (2023).
Quail, D. F. & Dannenberg, A. J. The obese adipose tissue microenvironment in cancer development and progression. Nat. Rev. Endocrinol. 15, 139–154 (2019).
Article PubMed PubMed Central Google Scholar
Maguire, O. A. et al. Creatine-mediated crosstalk between adipocytes and cancer cells regulates obesity-driven breast cancer. Cell Metab. 33, 499–512.e6 (2021).
Article CAS PubMed PubMed Central Google Scholar
Kershaw, E. E. & Flier, J. S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89, 2548–2556 (2004).
Article CAS PubMed Google Scholar
Galic, S., Oakhill, J. S. & Steinberg, G. R. Adipose tissue as an endocrine organ. Mol. Cell Endocrinol. 316, 129–139 (2010).
Article CAS PubMed Google Scholar
Wiseman, H. & Halliwell, B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J. 313, 17–29 (1996).
Article CAS PubMed PubMed Central Google Scholar
Ohnishi, S. et al. DNA damage in inflammation-related carcinogenesis and cancer stem cells. Oxid. Med. Cell Longev. 2013, 387014 (2013).
Article PubMed PubMed Central Google Scholar
Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).
Article CAS PubMed Google Scholar
Feinstein, R., Kanety, H., Papa, M. Z., Lunenfeld, B. & Karasik, A. Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J. Biol. Chem. 268, 26055–26058 (1993).
Article CAS PubMed Google Scholar
Cowey, S. & Hardy, R. W. The metabolic syndrome: a high-risk state for cancer? Am. J. Pathol. 169, 1505–1522 (2006).
Article CAS PubMed PubMed Central Google Scholar
Schwingshackl, L., Schwedhelm, C., Galbete, C. & Hoffmann, G. Adherence to Mediterranean diet and risk of cancer: an updated systematic review and meta-analysis. Nutrients https://doi.org/10.3390/nu9101063 (2017).
Wang, T., Masedunskas, A., Willett, W. C. & Fontana, L. Vegetarian and vegan diets: benefits and drawbacks. Eur. Heart J. 44, 3423–3439 (2023).
Article CAS PubMed PubMed Central Google Scholar
Abe, C. et al. A longitudinal association between the Traditional Japanese Diet Score and incidence and mortality of breast cancer-an ecological study. Eur. J. Clin. Nutr. 75, 929–936 (2021).
Takasu, A. et al. Daily diet and nutrition risk factors for gastric cancer incidence in a Japanese population. Gut Liver 18, 602–610 (2024).
Article PubMed PubMed Central Google Scholar
Huang, J. et al. Association between plant and animal protein intake and overall and cause-specific mortality. JAMA Intern. Med. 180, 1173–1184 (2020).
Article CAS PubMed Google Scholar
Farvid, M. S. et al. Consumption of red meat and processed meat and cancer incidence: a systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 36, 937–951 (2021).
Dyar, K. A. et al. Atlas of circadian metabolism reveals system-wide coordination and communication between clocks. Cell 174, 1571–1585.e11 (2018). This work describes comprehensive maps of circadian metabolism across mouse tissues in the context of systemic energy balance and under chronic nutrient stress (high fat diet), revealing a key role of circadian rhythm in tissue nutrient availability.
Article CAS PubMed PubMed Central Google Scholar
Sullivan, M. R. et al. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. eLife https://doi.org/10.7554/eLife.44235 (2019).
Allen, A. M., Hicks, S. B., Mara, K. C., Larson, J. J. & Therneau, T. M. The risk of incident extrahepatic cancers is higher in non-alcoholic fatty liver disease than obesity — a longitudinal cohort study. J. Hepatol. 71, 1229–1236 (2019).
Article PubMed PubMed Central Google Scholar
Mahale, P. et al. Hepatitis C virus infection and the risk of cancer among elderly US adults: a registry-based case-control study. Cancer 123, 1202–1211 (2017).
Pol, S., Vallet-Pichard, A. & Hermine, O. Extrahepatic cancers and chronic HCV infection. Nat. Rev. Gastroenterol. Hepatol. 15, 283–290 (2018).
Sabbagh, C. et al. Management of colon cancer in patients with cirrhosis: a review. Surg. Oncol. 24, 187–193 (2015).
Article CAS PubMed Google Scholar
Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101 (2013).
Article CAS PubMed Google Scholar
Tilg, H. & Moschen, A. R. Mechanisms behind the link between obesity and gastrointestinal cancers. Best Pract. Res. Clin. Gastroenterol. 28, 599–610 (2014).
Article CAS PubMed Google Scholar
Goldman, O. et al. Early infiltration of innate immune cells to the liver depletes HNF4α and promotes extrahepatic carcinogenesis. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-22-1062 (2023).
Kut, E. & Menekse, S. Prognostic significance of pretreatment albumin-bilirubin (ALBI) grade and platelet-albumin-bilirubin (PALBI) grade in patients with small cell lung cancer. Sci. Rep. 14, 1371 (2024).
Article CAS PubMed PubMed Central Google Scholar
Drapela, S., Ilter, D. & Gomes, A. P. Metabolic reprogramming: a bridge between aging and tumorigenesis. Mol. Oncol. 16, 3295–3318 (2022).
Article CAS PubMed PubMed Central Google Scholar
Ross, J. M. et al. High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio. Proc. Natl Acad. Sci. USA 107, 20087–20092 (2010).
Comments (0)