Abdelaziz Mohamed I, Gadeau AP, Hasan A, Abdulrahman N, Mraiche F (2019) ‘Osteopontin: A Promising Therapeutic Target in Cardiac Fibrosis’, Cells, 8
Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA (2009) Epithelial-mesenchymal transitions: the importance of changing cell state in development and Disease. J Clin Invest 119:1438–1449
Article CAS PubMed PubMed Central Google Scholar
Adegunsoye A, Alqalyoobi S, Linderholm A, Bowman WS, Lee CT, Pugashetti JV, Sarma N, Ma SF, Haczku A, Sperling A, Strek ME, Noth I and J. M. Oldham. 2020. ‘Circulating Plasma Biomarkers of Survival in Antifibrotic-Treated Patients With Idiopathic Pulmonary Fibrosis’, Chest, 158: 1526–1534
Beeh KM, Beier J, Kornmann O, Buhl R (2003) Sputum matrix metalloproteinase-9, tissue inhibitor of metalloprotinease-1, and their molar ratio in patients with Chronic Obstructive Pulmonary Disease, Idiopathic Pulmonary Fibrosis and healthy subjects. Respir Med 97:634–639
Article CAS PubMed Google Scholar
Borensztajn K, Crestani B, Kolb M (2013) Idiopathic Pulmonary Fibrosis: from epithelial injury to biomarkers–insights from the bench side. Respiration 86:441–452
Article CAS PubMed Google Scholar
Braga TT, Agudelo JS, Camara NO (2015) Macrophages during the fibrotic process: M2 as friend and Foe. Front Immunol 6:602
Article PubMed PubMed Central Google Scholar
Cao Y, Rudrakshala J, Williams R, Rodriguez S, Sorkhdini P, Yang AX, Mundy M, Yang D, Palmisciano A, Walsh T, Delcompare C, Caine T, Tomasi L, Shea BS, Zhou Y (2022) CRTH2 mediates profibrotic macrophage differentiation and promotes lung fibrosis. Am J Respir Cell Mol Biol 67:201–214
Article CAS PubMed PubMed Central Google Scholar
Chabas D, Baranzini SE, Mitchell D, Bernard CC, Rittling SR, Denhardt DT, Sobel RA, Lock C, Karpuj M, Pedotti R, Heller R, Oksenberg JR, Steinman L (2001) Science 294:1731–1735 ‘The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease’
Article CAS PubMed Google Scholar
Chanda D, Otoupalova E, Smith SR, Volckaert T, De Langhe SP, Thannickal VJ (2019) Developmental pathways in the pathogenesis of lung fibrosis. Mol Aspects Med 65:56–69
Article CAS PubMed Google Scholar
Clynick B, Corte TJ, Jo HE, Stewart I, Glaspole IN, Grainge C, Maher TM, Navaratnam V, Hubbard R, Hopkins PMA, Reynolds PN, Chapman S, Zappala C, Keir GJ, Cooper WA, Mahar AM, Ellis S, Goh NS, De Jong E, Cha L, Tan DBA, Leigh L, Oldmeadow C, Walters EH, Jenkins RG, Moodley Y (2022) ‘Biomarker signatures for progressive idiopathic pulmonary fibrosis’, Eur Respir J, 59
Collard HR, Ryerson CJ, Corte TJ, Jenkins G, Kondoh Y, Lederer DJ, Lee JS, Maher TM, Wells AU, Antoniou KM, Behr J, Brown KK, Cottin V, Flaherty KR, Fukuoka J, Hansell DM, Johkoh T, Kaminski N, Kim DS, Kolb M, Lynch DA, Myers JL, Raghu G, Richeldi L, Taniguchi H and F. J. Martinez. 2016. ‘Acute Exacerbation of Idiopathic Pulmonary Fibrosis. An International Working Group Report’, Am J Respir Crit Care Med, 194: 265–275
Coombes JD, Choi SS, Swiderska-Syn M, Manka P, Reid DT, Palma E, Briones-Orta MA, Xie G, Younis R, Kitamura N, Della Peruta M, Bitencourt S, Dollé L, Oo YH, Mi Z, Kuo PC, Williams R, Chokshi S, Canbay A, Claridge LC, Eksteen B, Diehl AM and W. K. Syn. 2016. ‘Osteopontin is a proximal effector of leptin-mediated non-alcoholic steatohepatitis (NASH) fibrosis’, Biochim Biophys Acta, 1862: 135–144
Coppola D, Szabo M, Boulware D, Muraca P, Alsarraj M, Chambers AF, Yeatman TJ (2004) Correlation of osteopontin protein expression and pathological stage across a wide variety of Tumor histologies. Clin Cancer Res 10:184–190
Article CAS PubMed Google Scholar
Cordier JF, Cottin V (2013) Neglected evidence in Idiopathic Pulmonary Fibrosis: from history to earlier diagnosis. Eur Respir J 42:916–923
Cui Y, Ji J, Hou J, Tan Y, Han X (2021) ‘Identification of Key Candidate Genes Involved in the Progression of Idiopathic Pulmonary Fibrosis’, Molecules, 26
Demedts M, Wells AU, Antó JM, Costabel U, Hubbard R, Cullinan P, Slabbynck H, Rizzato G, Poletti V, Verbeken EK, Thomeer MJ, Kokkarinen J, Dalphin JC, Taylor AN (2001) Interstitial lung Diseases: an epidemiological overview. Eur Respir J Suppl 32:2s–16s
Desch AN, Gibbings SL, Goyal R, Kolde R, Bednarek J, Bruno T, Slansky JE, Jacobelli J, Mason R, Ito Y, Messier E, Randolph GJ, Prabagar M, Atif SM, Segura E, Xavier RJ, Bratton DL, Janssen WJ, Henson PM and C. V. Jakubzick. 2016. ‘Flow Cytometric Analysis of Mononuclear Phagocytes in Nondiseased Human Lung and Lung-Draining Lymph Nodes’, Am J Respir Crit Care Med, 193: 614–626
Ding Y, Chen J, Cui G, Wei Y, Lu C, Wang L, Diao H (2016) Pathophysiological role of osteopontin and angiotensin II in Atherosclerosis. Biochem Biophys Res Commun 471:5–9
Article CAS PubMed Google Scholar
Dong J, Ma Q (2017) Osteopontin enhances multi-walled carbon nanotube-triggered lung fibrosis by promoting TGF-beta1 activation and myofibroblast differentiation. Part Fibre Toxicol 14:18
Article PubMed PubMed Central Google Scholar
El Agha E, Kramann R, Schneider RK, Li X, Seeger W, Humphreys BD, Bellusci S (2017) Mesenchymal stem cells in Fibrotic Disease. Cell Stem Cell 21:166–177
El Kasmi KC, Qualls JE, Pesce JT, Smith AM, Thompson RW, Henao-Tamayo M, Basaraba RJ, König T, Schleicher U, Koo MS, Kaplan G, Fitzgerald KA, Tuomanen EI, Orme IM, Kanneganti TD, Bogdan C, Wynn TA, Murray PJ (2008) Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat Immunol 9:1399–1406
Article PubMed PubMed Central Google Scholar
Fujisawa Y, Matsuda K, Uehara T (2020) Osteopontin enhances the migration of lung fibroblasts via upregulation of interleukin-6 through the extracellular signal-regulated kinase (ERK) pathway. Biol Chem 401:1071–1080
Article CAS PubMed Google Scholar
Futosi K, Fodor S, Mócsai A (2013) Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 17:638–650
Article CAS PubMed PubMed Central Google Scholar
Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, Zaravinos A (2020) EMT factors and metabolic pathways in Cancer. Front Oncol 10:499
Article PubMed PubMed Central Google Scholar
Gjorevski N, Boghaert E, Nelson CM (2012) Regulation of epithelial-mesenchymal transition by Transmission of Mechanical Stress through epithelial tissues. Cancer Microenviron 5:29–38
Gregory AD, Kliment CR, Metz HE, Kim KH, Kargl J, Agostini BA, Crum LT, Oczypok EA, Oury TA, Houghton AM (2015) Neutrophil elastase promotes myofibroblast differentiation in lung fibrosis. J Leukoc Biol 98:143–152
Article CAS PubMed PubMed Central Google Scholar
Gschwandtner M, Strutzmann E, Teixeira MM, Anders HJ, Diedrichs-Möhring M, Gerlza T, Wildner G, Russo RC, Adage T, Kungl AJ (2017) Glycosaminoglycans are important mediators of neutrophilic inflammation in vivo. Cytokine 91:65–73
Article CAS PubMed Google Scholar
Guiot J, Henket M, Corhay JL, Moermans C, Louis R (2017) Sputum biomarkers in IPF: evidence for raised gene expression and protein level of IGFBP-2, IL-8 and MMP-7. PLoS ONE 12:e0171344
Article CAS PubMed PubMed Central Google Scholar
Gulati S, Thannickal VJ (2019) The aging lung and Idiopathic Pulmonary Fibrosis. Am J Med Sci 357:384–389
Hao C, Cui Y, Owen S, Li W, Cheng S, Jiang WG (2017) Human osteopontin: potential clinical applications in cancer (review). Int J Mol Med 39:1327–1337
Article CAS PubMed PubMed Central Google Scholar
Hatipoglu OF, Uctepe E, Opoku G, Wake H, Ikemura K, Ohtsuki T, Inagaki J, Gunduz M, Gunduz E, Watanabe S, Nishinaka T, Takahashi H, Hirohata S (2021) Osteopontin silencing attenuates bleomycin-induced murine pulmonary fibrosis by regulating epithelial-mesenchymal transition. Biomed Pharmacother 139:111633
Article CAS PubMed Google Scholar
He Y, Shang Y, Li Y, Wang M, Yu D, Yang Y, Ning S, Chen H (2022) An 8-ferroptosis-related genes signature from Bronchoalveolar Lavage Fluid for prognosis in patients with Idiopathic Pulmonary Fibrosis. BMC Pulm Med 22:15
Article CAS PubMed PubMed Central Google Scholar
Heukels P, Moor CC, von der Thusen JH, Wijsenbeek MS, Kool M (2019) Inflammation and immunity in IPF pathogenesis and treatment. Respir Med 147:79–91
Article CAS PubMed Google Scholar
Hirahara K, Aoki A, Morimoto Y, Kiuchi M, Okano M, Nakayama T (2019) The immunopathology of lung fibrosis: amphiregulin-producing pathogenic memory T helper-2 cells control the airway fibrotic responses by inducing eosinophils to secrete osteopontin. Semin Immunopathol 41:339–348
Hopkins RB, Burke N, Fell C, Dion G, Kolb M (2016) Epidemiology and survival of Idiopathic Pulmonary Fibrosis from national data in Canada. Eur Respir J 48:187–195
Hou J, Shi J, Chen L, Lv Z, Chen X, Cao H, Xiang Z, Han X (2018) M2 macrophages promote myofibroblast differentiation of LR-MSCs and are associated with pulmonary fibrogenesis. Cell Commun Signal 16:89
Article CAS PubMed PubMed Central Google Scholar
Hou J, Ji J, Chen X, Cao H, Tan Y, Cui Y, Xiang Z, Han X (2021) Alveolar epithelial cell-derived sonic hedgehog promotes pulmonary fibrosis through OPN-dependent alternative macrophage activation. Febs j 288:3530–3546
Article CAS PubMed Google Scholar
Hsu YL, Huang MS, Yang CJ, Hung JY, Wu LY, Kuo PL (2011) Lung tumor-associated osteoblast-derived bone morphogenetic protein-2 increased epithelial-to-mesenchymal transition of cancer by Runx2/Snail signaling pathway. J Biol Chem 286:37335–37346
Article CAS PubMed PubMed Central Google Scholar
Hutchinson J, Fogarty A, Hubbard R, McKeever T (2015) Global incidence and mortality of Idiopathic Pulmonary Fibrosis: a systematic review. Eur Respir J 46:795–806
Icer MA, Gezmen-Karadag M (2018) The multiple functions and mechanisms of osteopontin. Clin Biochem 59:17–24
Article CAS PubMed Google Scholar
Inman CK, Shore P (2003) The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. J Biol Chem 278:48684–48689
Comments (0)