Kirshner HS (2011) Transient global amnesia: a brief review and update. Curr Neurol Neurosci Rep 11(6):578–582. https://doi.org/10.1007/s11910-011-0224-9
Huang CF, Pai MC (2008) Transient amnesia in a patient with left temporal tumor: symptomatic transient global amnesia or an epileptic amnesia? Neurologist 14(3):196–200. https://doi.org/10.1097/NRL.0b013e3181618af1
Chau L, Liu A (2019) Transient global amnesia as the sole presentation of an acute stroke in the left cingulate gyrus. Case Rep Neurol Med 2019:4810629. https://doi.org/10.1155/2019/4810629
Article PubMed PubMed Central Google Scholar
Meng D, Alsaeed M, Randhawa J, Chen T (2021) Retrosplenial stroke mimicking transient global amnesia. Can J Neurol Sci 48(6):884–885. https://doi.org/10.1017/cjn.2021.6
Teive HA, Kowacs PA, Maranhao Filho P, Piovesan EJ, Werneck LC (2005) Leao’s cortical spreading depression: from experimental “artifact” to physiological principle. Neurology 65(9):1455–1459. https://doi.org/10.1212/01.wnl.0000183281.12779.cd
Article CAS PubMed Google Scholar
Lewis SL (1998) Aetiology of transient global amnesia. Lancet 352(9125):397–399. https://doi.org/10.1016/S0140-6736(98)01442-1
Article CAS PubMed Google Scholar
Pantoni L, Bertini E, Lamassa M, Pracucci G, Inzitari D (2005) Clinical features, risk factors, and prognosis in transient global amnesia: a follow-up study. Eur J Neurol 12(5):350–356. https://doi.org/10.1111/j.1468-1331.2004.00982.x
Article CAS PubMed Google Scholar
Seo YD, Lee DA, Park KM (2023) Can artificial intelligence diagnose transient global amnesia using electroencephalography data? J Clin Neurol 19(1):36–43. https://doi.org/10.3988/jcn.2023.19.1.36
Article PubMed PubMed Central Google Scholar
Park KM, Han YH, Kim TH, Mun CW, Shin KJ, Ha SY, Park J, Kim SE (2015) Pre-existing structural abnormalities of the limbic system in transient global amnesia. J Clin Neurosci 22(5):843–847. https://doi.org/10.1016/j.jocn.2014.11.017
Kim HC, Lee BI, Kim SE, Park KM (2017) Cortical morphology in patients with transient global amnesia. Brain Behav 7(12):e00872. https://doi.org/10.1002/brb3.872
Article PubMed PubMed Central Google Scholar
Park KM, Lee BI, Kim SE (2018) Is transient global amnesia a network disease? Eur Neurol 80(5–6):345–354. https://doi.org/10.1159/000496511
Kim J, Lee DA, Kim HC, Lee HJ, Park KM (2021) Brain networks in patients with isolated or recurrent transient global amnesia. Acta Neurol Scand 144(5):465–472. https://doi.org/10.1111/ane.13490
Kim GH, Kim BR, Chun MY, Park KD, Lim SM, Jeong JH (2021) Aberrantly higher functional connectivity in the salience network is associated with transient global amnesia. Sci Rep 11(1):20598. https://doi.org/10.1038/s41598-021-97842-y
Article CAS PubMed PubMed Central Google Scholar
Logan AP, LaCasse PM, Lunday BJ (2023) Social network analysis of Twitter interactions: a directed multilayer network approach. Soc Netw Anal Min 13(1):65. https://doi.org/10.1007/s13278-023-01063-2
Article PubMed PubMed Central Google Scholar
Buldu JM, Papo D (2018) Can multilayer brain networks be a real step forward?: Comment on “Network science of biological systems at different scales: A review” by M. Gosak et al. Phys Life Rev 24:153–155
Klepl D, He F, Wu M, Blackburn DJ, Sarrigiannis PG (2023) Cross-frequency multilayer network analysis with bispectrum-based functional connectivity: a study of Alzheimer’s disease. Neuroscience 521:77–88. https://doi.org/10.1016/j.neuroscience.2023.04.008
Article CAS PubMed Google Scholar
Long D, Zhang M, Yu J, Zhu Q, Chen F, Li F (2023) Intelligent diagnosis of major depression disease based on multi-layer brain network. Front Neurosci 17:1126865. https://doi.org/10.3389/fnins.2023.1126865
Article PubMed PubMed Central Google Scholar
Ke M, Wang C, Liu G (2023) Multilayer brain network modeling and dynamic analysis of juvenile myoclonic epilepsy. Front Behav Neurosci 17:1123534. https://doi.org/10.3389/fnbeh.2023.1123534
Article PubMed PubMed Central Google Scholar
Hodges JR, Warlow CP (1990) Syndromes of transient amnesia: towards a classification A study of 153 cases. J Neurol Neurosurg Psychiatry 53(10):834–843. https://doi.org/10.1136/jnnp.53.10.834
Article CAS PubMed PubMed Central Google Scholar
Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97(20):11050–11055. https://doi.org/10.1073/pnas.200033797
Article CAS PubMed PubMed Central Google Scholar
Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021
King DJ, Wood AG (2020) Clinically feasible brain morphometric similarity network construction approaches with restricted magnetic resonance imaging acquisitions. Netw Neurosci 4(1):274–291. https://doi.org/10.1162/netn_a_00123
Article PubMed PubMed Central Google Scholar
Seidlitz J, Vasa F, Shinn M, Romero-Garcia R, Whitaker KJ, Vertes PE, Wagstyl K, Kirkpatrick Reardon P, Clasen L, Liu S, Messinger A, Leopold DA, Fonagy P, Dolan RJ, Jones PB, Goodyer IM, Consortium N, Raznahan A, Bullmore ET (2018) Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron 97(1):231-247e237. https://doi.org/10.1016/j.neuron.2017.11.039
Article CAS PubMed Google Scholar
Yeh FC, Wedeen VJ, Tseng WY (2010) Generalized q-sampling imaging. IEEE Trans Med Imaging 29(9):1626–1635. https://doi.org/10.1109/TMI.2010.2045126
Mijalkov M, Kakaei E, Pereira JB, Westman E, Volpe G (2017) Alzheimer’s Disease Neuroimaging I BRAPH: a graph theory software for the analysis of brain connectivity. PLoS One 12(8):0178798. https://doi.org/10.1371/journal.pone.0178798
de Domenico M (2018) Multilayer network modeling of integrated biological systems: Comment on “Network science of biological systems at different scales: A review” by Gosak et al. Phys Life Rev 24:149–152
Puxeddu MG, Petti M, Astolfi L (2021) A comprehensive analysis of multilayer community detection algorithms for application to EEG-based brain networks. Front Syst Neurosci 15:624183. https://doi.org/10.3389/fnsys.2021.624183
Article PubMed PubMed Central Google Scholar
Lv Y, Huang S, Zhang T, Gao B (2021) Application of multilayer network models in bioinformatics. Front Genet 12:664860. https://doi.org/10.3389/fgene.2021.664860
Article PubMed PubMed Central Google Scholar
Casas-Roma J, Martinez-Heras E, Sole-Ribalta A, Solana E, Lopez-Soley E, Vivo F, Diaz-Hurtado M, Alba-Arbalat S, Sepulveda M, Blanco Y, Saiz A, Borge-Holthoefer J, Llufriu S, Prados F (2022) Applying multilayer analysis to morphological, structural, and functional brain networks to identify relevant dysfunction patterns. Netw Neurosci 6(3):916–933. https://doi.org/10.1162/netn_a_00258
Article PubMed PubMed Central Google Scholar
Shahabi H, Nair DR, Leahy RM (2023) Multilayer brain networks can identify the epileptogenic zone and seizure dynamics. Elife 17(12):e68531
Mak LE, Minuzzi L, MacQueen G, Hall G, Kennedy SH, Milev R (2017) The default mode network in healthy individuals: a systematic review and meta-analysis. Brain Connect 7(1):25–33. https://doi.org/10.1089/brain.2016.0438
Park KM, Kim KT, Kang KW, Park JA, Seo JG, Kim J, Chang H, Kim EY, Cho YW (2022) Society RLSSotKSR Alterations of functional connectivity in patients with restless legs syndrome. J Clin Neurol 18(3):290–297. https://doi.org/10.3988/jcn.2022.18.3.290
Article PubMed PubMed Central Google Scholar
Wang Y, Li Y, Sun F, Xu Y, Xu F, Wang S, Wang X (2023) Altered neuromagnetic activity in default mode network in childhood absence epilepsy. Front Neurosci 17:1133064. https://doi.org/10.3389/fnins.2023.1133064
Article PubMed PubMed Central Google Scholar
Malotaux V, Dricot L, Quenon L, Lhommel R, Ivanoiu A, Hanseeuw B (2023) Default-mode network connectivity changes during the progression toward Alzheimer’s dementia: a longitudinal functional magnetic resonance imaging study. Brain Connect 13(5):287–296. https://doi.org/10.1089/brain.2022.0008
Chai XJ, Ofen N, Gabrieli JD, Whitfield-Gabrieli S (2014) Development of deactivation of the default-mode network during episodic memory formation. Neuroimage 84:932–938. https://doi.org/10.1016/j.neuroimage.2013.09.032
Sestieri C, Corbetta M, Romani GL, Shulman GL (2011) Episodic memory retrieval, parietal cortex, and the default mode network: functional and topographic analyses. J Neurosci 31(12):4407–4420. https://doi.org/10.1523/Jneurosci.3335-10.2011
Comments (0)