Evaluating a clinically available artificial intelligence model for intracranial aneurysm detection: a multi-reader study and algorithmic audit

Li MH, Chen SW, Li YD et al (2013) Prevalence of unruptured cerebral aneurysms in Chinese adults aged 35 to 75 years: a cross-sectional study. Ann Intern Med 159:514–521

Article  PubMed  Google Scholar 

Vlak MH, Algra A, Brandenburg R, Rinkel GJ (2011) Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol 10:626–636

Article  PubMed  Google Scholar 

Claassen J, Park S (2022) Spontaneous subarachnoid haemorrhage. Lancet 400:846–862

Article  PubMed Central  PubMed  Google Scholar 

Westerlaan HE, van Dijk JM, Jansen-van der Weide MC et al (2011) Intracranial aneurysms in patients with subarachnoid hemorrhage: CT angiography as a primary examination tool for diagnosis–systematic review and meta-analysis. Radiology 258:134–145

Article  PubMed  Google Scholar 

Thompson BG, Brown RD Jr, Amin-Hanjani S et al (2015) Guidelines for the management of patients with unruptured intracranial aneurysms: a guideline for healthcare professionals from the American heart association/American stroke association. Stroke 46:2368–2400

Article  PubMed  Google Scholar 

Hemphill JC 3rd, Greenberg SM, Anderson CS et al (2015) Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American heart association/American stroke association. Stroke 46:2032–2060

Article  PubMed  Google Scholar 

Lu L, Zhang LJ, Poon CS et al (2012) Digital subtraction CT angiography for detection of intracranial aneurysms: comparison with three-dimensional digital subtraction angiography. Radiology 262:605–612

Article  PubMed  Google Scholar 

Philipp LR, McCracken DJ, McCracken CE et al (2017) Comparison between CTA and digital subtraction angiography in the diagnosis of ruptured aneurysms. Neurosurgery 80:769–777

Article  PubMed  Google Scholar 

Yang ZL, Ni QQ, Schoepf UJ et al (2017) Small intracranial aneurysms: diagnostic accuracy of CT angiography. Radiology 285:941–952

Article  PubMed  Google Scholar 

Alexander R, Waite S, Bruno MA et al (2022) Mandating limits on workload, duty, and speed in radiology. Radiology 304:274–282

Article  PubMed  Google Scholar 

Shi Z, Hu B, Schoepf UJ et al (2020) Artificial intelligence in the management of intracranial aneurysms: current status and future perspectives. AJNR Am J Neuroradiol 41:373–379

Article  CAS  PubMed Central  PubMed  Google Scholar 

De Toledo OF, Gutierrez-Aguirre SF, Lara-Velazquez M et al (2024) Use of artificial intelligence software to detect intracranial aneurysms: a comprehensive stroke center experience. World Neurosurg 188:e59–e63

Article  PubMed  Google Scholar 

Maldaner N, Stienen MN, Bijlenga P et al (2017) Interrater agreement in the radiologic characterization of ruptured intracranial aneurysms based on computed tomography angiography. World Neurosurg 103:876–882

Article  PubMed  Google Scholar 

Hu B, Shi Z, Lu L et al (2024) A deep-learning model for intracranial aneurysm detection on CT angiography images in China: a stepwise, multicentre, early-stage clinical validation study. Lancet Digit Health 6:e261–e271

Article  CAS  PubMed  Google Scholar 

Park A, Chute C, Rajpurkar P et al (2019) Deep learning-assisted diagnosis of cerebral aneurysms using the HeadXNet model. JAMA Netw Open 2:e195600

Article  PubMed Central  PubMed  Google Scholar 

Yang J, Xie M, Hu C et al (2021) Deep learning for detecting cerebral aneurysms with CT angiography. Radiology 298:155–163

Article  PubMed  Google Scholar 

Shi Z, Miao C, Schoepf UJ et al (2020) A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images. Nat Commun 11:6090

Article  CAS  PubMed Central  PubMed  Google Scholar 

Kallmes DF, Erickson BJ (2021) Automated aneurysm detection: emerging from the shallow end of the deep learning pool. Radiology 298:164–165

Article  PubMed  Google Scholar 

Obuchowski NA, Bullen J (2022) Multireader diagnostic accuracy imaging studies: fundamentals of design and analysis. Radiology 303:26–34

Article  PubMed  Google Scholar 

Liu X, Glocker B, McCradden MM, Ghassemi M, Denniston AK, Oakden-Rayner L (2022) The medical algorithmic audit. Lancet Digit Health 4:e384–e397

Article  CAS  PubMed  Google Scholar 

Hillis SL, Soh BP (2023) Obuchowski-Rockette analysis for multi-reader multi-case (MRMC) readers-nested-in-test study design with unequal numbers of readers. Proc SPIE Int Soc Opt Eng 12467:124670F

PubMed Central  PubMed  Google Scholar 

Hillis SL, Chakraborty DP, Orton CG (2017) ROC or FROC? It depends on the research question. Med Phys 44:1603–1606

Article  PubMed Central  PubMed  Google Scholar 

Chen PC, Mermel CH, Liu Y (2021) Evaluation of artificial intelligence on a reference standard based on subjective interpretation. Lancet Digit Health 3:e693–e695

Article  CAS  PubMed  Google Scholar 

He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K (2019) The practical implementation of artificial intelligence technologies in medicine. Nat Med 25:30–36

Article  CAS  PubMed Central  PubMed  Google Scholar 

Wilken M, Hüske-Kraus D, Klausen A, Koch C, Schlauch W, Röhrig R (2017) Alarm fatigue: causes and effects. Stud Health Technol Inf 243:107–111

Google Scholar 

Rajpurkar P, Chen E, Banerjee O, Topol EJ (2022) AI in health and medicine. Nat Med 28:31–38

Article  CAS  PubMed  Google Scholar 

Wei X, Jiang J, Cao W et al (2022) Artificial intelligence assistance improves the accuracy and efficiency of intracranial aneurysm detection with CT angiography. Eur J Radiol 149:110169

Article  PubMed  Google Scholar 

Ueda D, Yamamoto A, Nishimori M et al (2019) Deep learning for MR Angiography: automated detection of cerebral aneurysms. Radiology 290:187–194

Article  PubMed  Google Scholar 

Miki S, Hayashi N, Masutani Y et al (2016) Computer-assisted detection of cerebral aneurysms in MR Angiography in a routine image-reading environment: effects on diagnosis by radiologists. AJNR Am J Neuroradiol 37:1038–1043

Article  CAS  PubMed Central  PubMed  Google Scholar 

Vasey B, Nagendran M, Campbell B et al (2022) Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nat Med 28:924–933

Article  CAS  PubMed  Google Scholar 

Schuur F, Rezazade Mehrizi MH, Ranschaert E (2021) Training opportunities of artificial intelligence (AI) in radiology: a systematic review. Eur Radiol 31:6021–6029

Article  PubMed Central  PubMed  Google Scholar 

Wiggins WF, Caton MT, Magudia K et al (2020) Preparing radiologists to lead in the era of artificial intelligence: designing and implementing a focused data science pathway for senior radiology residents. Radiol Artif Intell 2:e200057

Article  PubMed Central  PubMed  Google Scholar 

Comments (0)

No login
gif