Machine learning diagnostic model for amyotrophic lateral sclerosis analysis using MRI-derived features

Hardiman O, Al-Chalabi A, Chio A et al (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Prim 3:17071. https://doi.org/10.1038/nrdp.2017.71

Article  PubMed  Google Scholar 

Murphy J, Henry R, Lomen-Hoerth C (2007) Establishing subtypes of the continuum of frontal lobe impairment in amyotrophic lateral sclerosis. Arch Neurol 64:330. https://doi.org/10.1001/archneur.64.3.330

Article  PubMed  Google Scholar 

Phukan J, Pender NP, Hardiman O (2007) Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol 6:994–1003. https://doi.org/10.1016/S1474-4422(07)70265-X

Article  CAS  PubMed  Google Scholar 

Al-Chalabi A, Hardiman O, Kiernan MC et al (2016) Amyotrophic lateral sclerosis: moving towards a new classification system. Lancet Neurol 15:1182–1194. https://doi.org/10.1016/S1474-4422(16)30199-5

Article  PubMed  Google Scholar 

Pugdahl K, Camdessanché J-P, Cengiz B et al (2021) Gold Coast diagnostic criteria increase sensitivity in amyotrophic lateral sclerosis. Clin Neurophysiol 132:3183–3189. https://doi.org/10.1016/j.clinph.2021.08.014

Article  PubMed  Google Scholar 

Martínez-Molina M, Argente-Escrig H, Polo MF et al (2020) Early referral to an ALS center reduces several months the diagnostic delay: a multicenter-based study. Front Neurol. https://doi.org/10.3389/fneur.2020.604922

Article  PubMed  PubMed Central  Google Scholar 

Petrov D, Mansfield C, Moussy A, Hermine O (2017) ALS clinical trials review: 20 years of failure. Are we any closer to registering a new treatment?? Front Aging Neurosci 9:68. https://doi.org/10.3389/fnagi.2017.00068

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sawada H (2017) Clinical efficacy of edaravone for the treatment of amyotrophic lateral sclerosis. Expert Opin Pharmacother 18:735–738. https://doi.org/10.1080/14656566.2017.1319937

Article  CAS  PubMed  Google Scholar 

Vázquez-Costa JF, Mazón M, Carreres-Polo J et al (2018) Brain signal intensity changes as biomarkers in amyotrophic lateral sclerosis. Acta Neurol Scand 137:262–271. https://doi.org/10.1111/ane.12863

Article  CAS  PubMed  Google Scholar 

Huynh W, Simon NG, Grosskreutz J et al (2016) Assessment of the upper motor neuron in amyotrophic lateral sclerosis. Clin Neurophysiol 127:2643–2660. https://doi.org/10.1016/j.clinph.2016.04.025

Article  PubMed  Google Scholar 

Agosta F, Valsasina P, Riva N et al (2012) The cortical signature of amyotrophic lateral sclerosis. PLoS One 7:e42816. https://doi.org/10.1371/journal.pone.0042816

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mazón M, Vázquez Costa JF, Ten-Esteve A, Martí-Bonmatí L (2018) Imaging biomarkers for the diagnosis and prognosis of neurodegenerative diseases. The example of amyotrophic lateral sclerosis. Front Neurosci 12:784. https://doi.org/10.3389/fnins.2018.00784

Article  PubMed  PubMed Central  Google Scholar 

Grollemund V, Pradat P-F, Querin G et al (2019) Machine learning in amyotrophic lateral sclerosis: achievements, pitfalls, and future directions. Front Neurosci 13. https://doi.org/10.3389/fnins.2019.00135

Bede P (2017) From qualitative radiological cues to machine learning: MRI-based diagnosis in neurodegeneration. Future Neurol 12:5–8. https://doi.org/10.2217/fnl-2016-0029

Article  CAS  Google Scholar 

Penny W, Friston K, Ashburner J et al (2007) Statistical parametric mapping. The Analysis of Functional Brain Images. Elsevier

Fischl B, van der Kouwe A, Destrieux C et al (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22. https://doi.org/10.1093/cercor/bhg087

Article  PubMed  Google Scholar 

Makris N, Goldstein JM, Kennedy D et al (2006) Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr Res 83:155–171. https://doi.org/10.1016/j.schres.2005.11.020

Article  PubMed  Google Scholar 

Clarkson MJ, Cardoso MJ, Ridgway GR et al (2011) A comparison of voxel and surface based cortical thickness estimation methods. Neuroimage 57:856–865. https://doi.org/10.1016/j.neuroimage.2011.05.053

Article  PubMed  Google Scholar 

Langkammer C, Krebs N, Goessler W et al (2010) Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 257:455–462. https://doi.org/10.1148/radiol.10100495

Article  PubMed  Google Scholar 

Minnerop M, Specht K, Ruhlmann J et al (2009) In vivo voxel-based relaxometry in amyotrophic lateral sclerosis. J Neurol 256:28–34. https://doi.org/10.1007/s00415-009-0947-6

Article  PubMed  Google Scholar 

Yousry TA, Schmid UD, Alkadhi H et al (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120:141–157. https://doi.org/10.1093/brain/120.1.141

Article  PubMed  Google Scholar 

Lotze M, Erb M, Flor H et al (2000) fMRI evaluation of somatotopic representation in human primary motor cortex. Neuroimage 11:473–481. https://doi.org/10.1006/nimg.2000.0556

Article  CAS  PubMed  Google Scholar 

Weiss C, Nettekoven C, Rehme AK et al (2013) Mapping the hand, foot and face representations in the primary motor cortex — retest reliability of neuronavigated TMS versus functional MRI. Neuroimage 66:531–542. https://doi.org/10.1016/j.neuroimage.2012.10.046

Article  PubMed  Google Scholar 

Alkadhi H, Crelier GR, Boendermaker SH et al (2002) Reproducibility of Primary Motor Cortex Somatotopy Under Controlled Conditions. Am J Neuroradiol 23:1524-LP 1532

PubMed  PubMed Central  Google Scholar 

Welsh RC, Jelsone-Swain LM, Foerster BR (2013) The utility of independent component analysis and machine learning in the identification of the amyotrophic lateral sclerosis diseased brain. Front Hum Neurosci 7. https://doi.org/10.3389/fnhum.2013.00251

Sarica A, Cerasa A, Valentino P et al (2017) The corticospinal tract profile in amyotrophic lateral sclerosis. Hum Brain Mapp 38:727–739. https://doi.org/10.1002/hbm.23412

Article  PubMed  Google Scholar 

Schuster C, Hardiman O, Bede P (2016) Development of an automated MRI-based diagnostic protocol for amyotrophic lateral sclerosis using disease-specific pathognomonic features: a quantitative disease-state classification study. PLoS One 11:e0167331. https://doi.org/10.1371/journal.pone.0167331

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bede P, Iyer PM, Finegan E et al (2017) Virtual brain biopsies in amyotrophic lateral sclerosis: diagnostic classification based on in vivo pathological patterns. NeuroImage: Clinical 15:653–658. https://doi.org/10.1016/j.nicl.2017.06.010

Article  PubMed  Google Scholar 

Ferraro PM, Agosta F, Riva N et al (2017) Multimodal structural MRI in the diagnosis of motor neuron diseases. NeuroImage: Clinical 16:240–247. https://doi.org/10.1016/j.nicl.2017.08.002

Article  PubMed  Google Scholar 

Fratello M, Caiazzo G, Trojsi F et al (2017) Multi-view ensemble classification of brain connectivity images for neurodegeneration type discrimination. Neuroinformatics 15:199–213. https://doi.org/10.1007/s12021-017-9324-2

Article  PubMed  PubMed Central  Google Scholar 

D’hulst L, Van Weehaeghe D, Chiò A et al (2018) Multicenter validation of [18F]-FDG PET and support-vector machine discriminant analysis in automatically classifying patients with amyotrophic lateral sclerosis versus controls. Amyotroph Lateral Scler Front Degener 19:570–577. https://doi.org/10.1080/21678421.2018.1476548

Article  CAS  Google Scholar 

Querin G, El Mendili M-M, Bede P, et al (2018) Multimodal spinal cord MRI offers accurate diagnostic classification in ALS. J Neurol Neurosurg & Psychiatry 89:1220 LP– 1221. https://doi.org/10.1136/jnnp-2017-317214

Kocar TD, Behler A, Ludolph AC et al (2021) Multiparametric microstructural MRI and machine learning classification yields high diagnostic accuracy in amyotrophic lateral sclerosis: proof of concept. Front Neurol. https://doi.org/10.3389/fneur.2021.745475

Article  PubMed  PubMed Central  Google Scholar 

Kassubek J, Müller H-P (2020) Advanced neuroimaging approaches in amyotrophic lateral sclerosis: refining the clinical diagnosis. Expert Rev Neurother 20:237–249.

Comments (0)

No login
gif