Hoagland, M. B., Zamecnik, P. C. & Stephenson, M. L. Intermediate reactions in protein biosynthesis. Biochim. Biophys. Acta 24, 215–216 (1957).
Article CAS PubMed Google Scholar
Ogata, K. & Nohara, H. The possible role of the ribonucleic acid (RNA) of the pH 5 enzyme in amino acid activation. Biochim. Biophys. Acta 25, 659–660 (1957).
Article CAS PubMed Google Scholar
Holley, R. W. An alanine-dependent, ribonuclease-inhibited conversion of AMP to ATP, and its possible relationship to protein synthesis. J. Am. Chem. Soc. 79, 658–662 (1957). This study, together with Hoagland et al. (1957) and Ogata et al. (1957), is one of the original studies that discovered tRNAs.
Söll, D. & RajBhandary, U. L. tRNA: Structure, Biosynthesis, and Function (Wiley, 1995).
Suzuki, T. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol. 22, 375–392 (2021).
Article CAS PubMed Google Scholar
Suzuki, T., Nagao, A. & Suzuki, T. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu. Rev. Genet. 45, 299–329 (2011). This is a comprehensive review on human mt-tRNAs.
Article CAS PubMed Google Scholar
Orellana, E. A., Siegal, E. & Gregory, R. I. tRNA dysregulation and disease. Nat. Rev. Genet. 23, 651–664 (2022).
Article CAS PubMed Google Scholar
Holley, R. W. et al. Structure of a ribonucleic acid. Science 147, 1462–1465 (1965). This paper describes the first sequence of a tRNA.
Article CAS PubMed Google Scholar
Kim, S. H. et al. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185, 435–440 (1974).
Article CAS PubMed Google Scholar
Cramer, F., Erdmann, V. A., von der Haar, F. & Schlimme, E. Structure and reactivity of tRNA. J. Cell Physiol. 74, 163–178 (1969).
Ramsay, E. P. & Vannini, A. Structural rearrangements of the RNA polymerase III machinery during tRNA transcription initiation. Biochim. Biophys. Acta Gene Regul. Mech. 1861, 285–294 (2018).
Article CAS PubMed Google Scholar
Phizicky, E. M. & Hopper, A. K. tRNA biology charges to the front. Genes Dev. 24, 1832–1860 (2010).
Article PubMed PubMed Central Google Scholar
Rak, R. et al. Dynamic changes in tRNA modifications and abundance during T cell activation. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2106556118 (2021).
Torrent, M., Chalancon, G., de Groot, N. S., Wuster, A. & Madan Babu, M. Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions. Sci. Signal. 11, eaat6409 (2018).
Article PubMed PubMed Central Google Scholar
Dittmar, K. A., Goodenbour, J. M. & Pan, T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2, e221 (2006).
Article PubMed PubMed Central Google Scholar
Pinkard, O., McFarland, S., Sweet, T. & Coller, J. Quantitative tRNA-sequencing uncovers metazoan tissue-specific tRNA regulation. Nat. Commun. 11, 4104 (2020).
Article CAS PubMed PubMed Central Google Scholar
Kimura, S., Dedon, P. C. & Waldor, M. K. Comparative tRNA sequencing and RNA mass spectrometry for surveying tRNA modifications. Nat. Chem. Biol. 16, 964–972 (2020).
Article CAS PubMed PubMed Central Google Scholar
Gingold, H. et al. A dual program for translation regulation in cellular proliferation and differentiation. Cell 158, 1281–1292 (2014). This paper classifies ‘proliferation-specific’ and ‘differentiation-specific’ tRNAs.
Article CAS PubMed Google Scholar
Oler, A. J. et al. Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nat. Struct. Mol. Biol. 17, 620–628 (2010).
Article CAS PubMed PubMed Central Google Scholar
Barski, A. et al. Pol II and its associated epigenetic marks are present at Pol III-transcribed noncoding RNA genes. Nat. Struct. Mol. Biol. 17, 629–634 (2010).
Article CAS PubMed PubMed Central Google Scholar
Goodarzi, H. et al. Modulated expression of specific tRNAs drives gene expression and cancer progression. Cell 165, 1416–1427 (2016).
Article CAS PubMed PubMed Central Google Scholar
Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 50, D231–D235 (2022).
Article CAS PubMed Google Scholar
Zhang, W., Foo, M., Eren, A. M. & Pan, T. tRNA modification dynamics from individual organisms to metaepitranscriptomics of microbiomes. Mol. Cell 82, 891–906 (2022). This article includes a systematic analysis of current tRNA profiling methods.
Article CAS PubMed PubMed Central Google Scholar
Chujo, T. & Tomizawa, K. Human transfer RNA modopathies: diseases caused by aberrations in transfer RNA modifications. FEBS J. 288, 7096–7122 (2021).
Article CAS PubMed PubMed Central Google Scholar
Barbieri, I. & Kouzarides, T. Role of RNA modifications in cancer. Nat. Rev. Cancer 20, 303–322 (2020).
Article CAS PubMed Google Scholar
Clark, W. C., Evans, M. E., Dominissini, D., Zheng, G. & Pan, T. tRNA base methylation identification and quantification via high-throughput sequencing. RNA 22, 1771–1784 (2016).
Article CAS PubMed PubMed Central Google Scholar
Crick, F. H. Codon–anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19, 548–555 (1966).
Article CAS PubMed Google Scholar
Chan, P. P. & Lowe, T. M. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 44, D184–D189 (2016).
Article CAS PubMed Google Scholar
Chan, P. P., Lin, B. Y., Mak, A. J. & Lowe, T. M. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 49, 9077–9096 (2021). This resource paper, together with Chan et al. (2016), describes the GtRNAdb database of predicted tRNA sequences.
Article CAS PubMed PubMed Central Google Scholar
Pavon-Eternod, M. et al. tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res. 37, 7268–7280 (2009). This paper is one of the first to attempt global profiling of tRNA levels in cancer using microarrays.
Article CAS PubMed PubMed Central Google Scholar
Pavon-Eternod, M., Gomes, S., Rosner, M. R. & Pan, T. Overexpression of initiator methionine tRNA leads to global reprogramming of tRNA expression and increased proliferation in human epithelial cells. RNA 19, 461–466 (2013).
Article CAS PubMed PubMed Central Google Scholar
Earnest-Noble, L. B. et al. Two isoleucyl tRNAs that decode synonymous codons divergently regulate breast cancer metastatic growth by controlling translation of proliferation-regulating genes. Nat. Cancer 3, 1484–1497 (2022).
Article CAS PubMed Google Scholar
Taylor, M. W., Granger, G. A., Buck, C. A. & Holland, J. J. Similarities and differences among specific tRNA’s in mammalian tissues. Proc. Natl Acad. Sci. USA 57, 1712–1719 (1967).
Article CAS PubMed PubMed Central Google Scholar
Gallo, R. C. Transfer RNA’s in human leukemia. J. Cell Physiol. 74, 149–153 (1969).
Baliga, B. S., Borek, E., Weinstein, I. B. & Srinivasan, P. R. Differences in the transfer RNA’s of normal liver and Novikoff hepatoma. Proc. Natl Acad. Sci. USA 62, 899–905 (1969).
Article CAS PubMed PubMed Central Google Scholar
Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).
Article CAS PubMed PubMed Central Google Scholar
Birch, J. et al. The initiator methionine tRNA drives cell migration and invasion leading to increased metastatic potential in melanoma. Biol. Open 5, 1371–1379 (2016).
Article CAS PubMed PubMed Central Google Scholar
Ruggero, D. Translational control in cancer etiology. Cold Spring Harb. Perspect. Biol. 5, a012336 (2013).
Comments (0)