Rajabi S, Maresca M, Yumashev AV, Choopani R, Hajimehdipoor H. The Most competent plant-derived natural products for targeting apoptosis in cancer therapy. Biomolecules. 2021. https://doi.org/10.3390/BIOM11040534.
Article PubMed PubMed Central Google Scholar
https://www.who.int/news-room/fact-sheets/detail/cancer.
Sun S, Zhao Y, Xu K. Post-adjuvant chemotherapy for triple-negative breast cancer. Med Hypotheses. 2016;90:74–5. https://doi.org/10.1016/J.MEHY.2016.03.009.
Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363:1938–48. https://doi.org/10.1056/NEJMRA1001389.
Article CAS PubMed Google Scholar
Bakar AA, Akhtar MN, Ali NM, Yeap SK, Quah CK, Loh WS, Alitheen NB, Zareen S, Ul-Haq Z, Shah SAA. Design, synthesis and docking studies of Flavokawain B type Chalcones and their cytotoxic effects on MCF-7 and MDA-MB-231 cell lines. Molecules. 2018. https://doi.org/10.3390/MOLECULES23030616.
Article PubMed PubMed Central Google Scholar
Kiu H, Nicholson SE. Biology and significance of the JAK/STAT signalling pathways. Growth Factors. 2012;30:88–106. https://doi.org/10.3109/08977194.2012.660936.
Article CAS PubMed PubMed Central Google Scholar
Wu H, Huang M, Cao P, Wang T, Shu Y, Liu P. MiR-135a targets JAK2 and inhibits gastric cancer cell proliferation. Cancer Biol Ther. 2012;13:281–8. https://doi.org/10.4161/CBT.18943.
Article CAS PubMed Google Scholar
Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA, Cox CE, Falcone R, Fairclough R, Parsons S, Laudano A, Gazit A, Levitzki A, Kraker A, Jove R. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene. 2001;20:2499–513. https://doi.org/10.1038/SJ.ONC.1204349.
Article CAS PubMed Google Scholar
Marotta LLC, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, Bloushtain-Qimron N, Kim JJ, Choudhury SA, Maruyama R, Wu Z, Gönen M, Mulvey LA, Bessarabova MO, Huh SJ, Silver SJ, Kim SY, Park SY, Lee HE, Anderson KS, Richardson AL, Nikolskaya T, Nikolsky Y, Liu XS, Root DE, Hahn WC, Frank DA, Polyak K. The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24− stem cell-like breast cancer cells in human tumors. J Clin Invest. 2011;121:2723–35. https://doi.org/10.1172/JCI44745.
Article CAS PubMed PubMed Central Google Scholar
Kim MS, Lee WS, Jeong J, Kim SJ, Jin W. Induction of metastatic potential by TrkB via activation of IL6/JAK2/STAT3 and PI3K/AKT signaling in breast cancer. Oncotarget. 2015;6:40158–71. https://doi.org/10.18632/ONCOTARGET.5522.
Article PubMed PubMed Central Google Scholar
Nakamura H, Maeda H. Cancer chemotherapy, fundamentals of pharmaceutical. Nanoscience. 2023. https://doi.org/10.1007/978-1-4614-9164-4_15.
Dehelean CA, Marcovici I, Soica C, Mioc M, Coricovac D, Iurciuc S, Cretu OM, Pinzaru I. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules. 2021. https://doi.org/10.3390/MOLECULES26041109.
Article PubMed PubMed Central Google Scholar
Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ali B, Shah SA, Khalil AT. Plant-derived anticancer agents: A green anticancer approach, Asian Pac. J Trop Biomed. 2017;7:1129–50. https://doi.org/10.1016/J.APJTB.2017.10.016.
Orhan IE, Senol Deniz FS. Natural products as potential leads against coronaviruses: could they be encouraging structural models against SARS-CoV-2? Nat Prod Bioprospect. 2020;10:171–86. https://doi.org/10.1007/S13659-020-00250-4.
Article CAS PubMed PubMed Central Google Scholar
Kregiel D, Pawlikowska E, Antolak H. Urtica spp.: Ordinary plants with extraordinary properties, molecules : a journal of synthetic chemistry and natural product. Chemistry. 2018. https://doi.org/10.3390/MOLECULES23071664.
Upreti S, Prusty JS, Pandey SC, Kumar A, Samant M. Identification of novel inhibitors of angiotensin-converting enzyme 2 (ACE-2) receptor from Urtica dioica to combat coronavirus disease 2019 (COVID-19). Mol Divers. 2021;25:1795. https://doi.org/10.1007/S11030-020-10159-2.
Article CAS PubMed PubMed Central Google Scholar
Upreti S, Prusty JS, Kumar A, Samant M. Identification of SARS-CoV-2 spike protein inhibitors from urtica dioica to develop herbal-based therapeutics against COVID-19, World. J Tradit Chin Med. 2023;9:61–70. https://doi.org/10.4103/2311-8571.358784.
Tao Y, Zou W, Nanayakkara S, Kraka E. PyVibMS: a PyMOL plugin for visualizing vibrations in molecules and solids. J Mol Model. 2020. https://doi.org/10.1007/S00894-020-04508-Z.
Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263:243–50. https://doi.org/10.1007/978-1-4939-2269-7_19.
Article CAS PubMed Google Scholar
Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1:337–41. https://doi.org/10.1016/J.DDTEC.2004.11.007.
Article CAS PubMed Google Scholar
Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:1–13. https://doi.org/10.1038/srep42717.
Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46:W257–63. https://doi.org/10.1093/NAR/GKY318.
Article CAS PubMed PubMed Central Google Scholar
Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58:4066–72.
Article CAS PubMed PubMed Central Google Scholar
Chandra Pandey S, Dhami DS, Jha A, Chandra Shah G, Kumar A, Samant M. Identification of trans-2-cis-8-Matricaria-ester from the essential oil of erigeron multiradiatus and evaluation of its antileishmanial potential by in vitro and in silico approaches. ACS Omega. 2019;4:14640–9.
Article CAS PubMed PubMed Central Google Scholar
Hu K, Law JH, Fotovati A, Dunn SE. Small interfering RNA library screen identified polo-like kinase-1 (PLK1) as a potential therapeutic target for breast cancer that uniquely eliminates tumor-initiating cells. Breast Cancer Res. 2012;14:R22. https://doi.org/10.1186/BCR3107.
Article CAS PubMed PubMed Central Google Scholar
Ayele TM, Muche ZT, Teklemariam AB, Kassie AB, Abebe EC. Role of JAK2/STAT3 signaling pathway in the tumorigenesis, chemotherapy resistance, and treatment of solid tumors: a systemic review. J Inflamm Res. 2022;15:1349. https://doi.org/10.2147/JIR.S353489.
Argetsinger LS, Kouadio J-LK, Steen H, Stensballe A, Jensen ON, Carter-Su C. Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity. Mol Cell Biol. 2004;24:4955–67. https://doi.org/10.1128/MCB.24.11.4955-4967.2004.
Article CAS PubMed PubMed Central Google Scholar
Murray PJ. The JAK-STAT signaling pathway: input and output integration. J Immunol. 2007;178:2623–9. https://doi.org/10.4049/JIMMUNOL.178.5.2623.
Comments (0)