Advancing miRNA cancer research through artificial intelligence: from biomarker discovery to therapeutic targeting

National Cancer Institute. (n.d.). Cancer statistics. National Cancer Institute. Retrieved June, 2024, from https://www.cancer.gov/about-cancer/understanding/statistics

Chakrabortty A, Patton DJ, Smith BF, Agarwal P. miRNAs: potential as biomarkers and therapeutic targets for cancer. Genes. 2023;14(7):1375.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Menon A, Abd-Aziz N, Khalid K, Poh CL, Naidu R. miRNA: a promising therapeutic target in cancer. Int J Mol Sci. 2022;23(19):11502.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Galvão-Lima LJ, Morais AH, Valentim RA, Barreto EJ. miRNAs as biomarkers for early cancer detection and their application in the development of new diagnostic tools. Biomed Eng Online. 2021;20(1):21.

Article  PubMed  PubMed Central  Google Scholar 

Yerukala Sathipati S, Tsai MJ, Shukla SK, Ho SY. Artificial intelligence-driven pan-cancer analysis reveals miRNA signatures for cancer stage prediction. HGG Adv. 2023;4(3):100190. https://doi.org/10.1016/j.xhgg.2023.100190.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Metcalf GA. MicroRNAs: circulating biomarkers for the early detection of imperceptible cancers via biosensor and machine-learning advances. Oncogene. 2024. https://doi.org/10.1038/s41388-024-03076-3.

Article  PubMed  PubMed Central  Google Scholar 

Afshar S, Warden E, Manochehri H, Saidijam M. Application of artificial neural network in miRNA biomarker selection and precise diagnosis of colorectal cancer. Iran Biomed J. 2019;23(3):175–83.

Article  PubMed  PubMed Central  Google Scholar 

Ng S, Masarone S, Watson D, Barnes MR. The benefits and pitfalls of machine learning for biomarker discovery. Cell Tissue Res. 2023;394(1):17–31.

Article  PubMed  PubMed Central  Google Scholar 

Movassagh M, Morton SU, Hehnly C, et al. mirTarRnaSeq: an R/Bioconductor statistical package for miRNA-mRNA target identification and interaction analysis. BMC Genomics. 2022;23:439. https://doi.org/10.1186/s12864-022-08558-w.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li J, Ma X, Lin H, Zhao S, Li B, Huang Y. MHIF-MSEA: a novel model of miRNA set enrichment analysis based on multi-source heterogeneous information fusion. Front Genet. 2024;15:1375148.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nunes, S., Bastos, R., Marinho, A. I., Vieira, R., Benício, I., de Noronha, M. A., & Tavares, N. M. (2024). Recent advances in the development and clinical application of miRNAs in infectious diseases. Non-coding RNA Research.

Iacomino G. miRNAs: the road from bench to bedside. Genes. 2023;14(2):314.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Azari H, Nazari E, Mohit R, Asadnia A, Maftooh M, Nassiri M, Avan A. Machine learning algorithms reveal potential miRNAs biomarkers in gastric cancer. Sci Rep. 2023;13(1):6147. https://doi.org/10.1038/s41598-023-32332-x.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Guo L-X, You Z-H, Wang L, Yu C-Q, Zhao B-W, Ren Z-H, Pan J. A novel circRNA-miRNA association prediction model based on structural deep neural network embedding. Brief Bioinform. 2022. https://doi.org/10.1093/bib/bbac391.

Article  PubMed  PubMed Central  Google Scholar 

Aghayousefi R, Hosseiniyan Khatibi SM, Zununi Vahed S, Bastami M, Pirmoradi S, Teshnehlab M. A diagnostic miRNA panel to detect recurrence of ovarian cancer through artificial intelligence approaches. J Cancer Res Clin Oncol. 2023;149(1):325–41. https://doi.org/10.1007/s00432-022-04468-2.

Article  PubMed  CAS  Google Scholar 

Albaradei S, Napolitano F, Thafar MA, Gojobori T, Essack M, Gao X. MetaCancer: a deep learning-based pan-cancer metastasis prediction model developed using multi-omics data. Comput Struct Biotechnol J. 2021;19:4404–11.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yang S, Wang Y, Lin Y, Shao D, He K, Huang L. LncMirNet: predicting LncRNA–miRNA interaction based on deep learning of ribonucleic acid sequences. Molecules. 2020;25:4372.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pirmoradi S, Teshnehlab M, Zarghami N, Sharifi A. A self-organizing deep neuro-fuzzy system approach for classification of kidney cancer subtypes using miRNA genomics data. Computer Methods Programs Biomed. 2021;206:106132.

Article  Google Scholar 

Kanwal N, Al Samarrai OR, Al-Zaidi HMH, Mirzaei AR, Heidari MJ. Comprehensive analysis of microRNA (miRNA) in cancer cells. Cellular, Molecular and Biomedical Reports. 2023;3(2):89–97.

Article  Google Scholar 

Luo Y, Peng L, Shan W, Sun M, Luo L, Liang W. Machine learning in the development of targeting microRNAs in human disease. Front Genet. 2023;13:1088189.

Article  PubMed  PubMed Central  Google Scholar 

Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2015;43(D1):D146–52.

Article  PubMed  CAS  Google Scholar 

Parveen A, Mustafa SH, Yadav P, Kumar A. Applications of machine learning in miRNA discovery and target prediction. Curr Genomics. 2019;20(8):537–44. https://doi.org/10.2174/1389202921666200106111813.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hofestädt R, Schreiber F, Sommer B, Allmer J. Computational miRNomics—integrative approaches. J Integr Bioinform. 2017;14(1):20170012. https://doi.org/10.1515/jib-2017-0012.

Article  PubMed  PubMed Central  Google Scholar 

Medved, D., Nugues, P., & Nilsson, J. (2017, July). Predicting the outcome for patients in a heart transplantation queue using deep learning. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 74–77). IEEE.

Yousef M, Bakir-Gungor B, Jabeer A, Goy G, Qureshi R, Showe L. Recursive cluster elimination based rank function (SVM-RCE-R) implemented in KNIME. F1000Research. 2021;9:1255.

Article  PubMed Central  Google Scholar 

Mei D, Liu Q. A new algorithm for analysis of MiRNA expression profiles—SVM-RFE-FKNN. J Imaging Sci Technol. 2021. https://doi.org/10.2352/J.IMAGINGSCI.TECHNOL.2021.65.3.030407.

Article  Google Scholar 

Duan T, Kuang Z, Deng L. SVMMDR: prediction of miRNAs-drug resistance using support vector machines based on heterogeneous network. Front Oncol. 2022. https://doi.org/10.3389/fonc.2022.987609.

Article  PubMed  PubMed Central  Google Scholar 

Li Z, Huang X, Shi Y, Zou X, Li Z, Dai Z. Identification of MiRNA–disease associations based on information of multi-module and meta-path. Molecules. 2022. https://doi.org/10.3390/molecules27144443.

Article  PubMed  PubMed Central  Google Scholar 

Huang HY, Lin YC, Cui S, Huang Y, Tang Y, Xu J, Bao J, Li Y, Wen J, Zuo H, Wang W, Li J, Ni J, Ruan Y, Li L, Chen Y, Xie Y, Zhu Z, Cai X, Chen X, Huang HD. miRTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions. Nucl Acids Res. 2022. https://doi.org/10.1093/nar/gkab1079.

Article  PubMed  PubMed Central  Google Scholar 

Pian C, Mao S, Zhang G, Du J, Li F, Leung SY, Fan X. Discovering cancer-related miRNAs from miRNA-target interactions by support vector machines. Mol Ther Nucl Acids. 2020;19:1423–33. https://doi.org/10.1016/j.omtn.2020.01.019.

Article  CAS  Google Scholar 

Qiu Min, et al. "Machine learning based network analysis determined clinically relevant miRNAs in breast cancer. Front Genet. 2020;11:615864.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Slimene I, Messaoudi I, Elloumi

Comments (0)

No login
gif