National Cancer Institute. (n.d.). Cancer statistics. National Cancer Institute. Retrieved June, 2024, from https://www.cancer.gov/about-cancer/understanding/statistics
Chakrabortty A, Patton DJ, Smith BF, Agarwal P. miRNAs: potential as biomarkers and therapeutic targets for cancer. Genes. 2023;14(7):1375.
Article PubMed PubMed Central CAS Google Scholar
Menon A, Abd-Aziz N, Khalid K, Poh CL, Naidu R. miRNA: a promising therapeutic target in cancer. Int J Mol Sci. 2022;23(19):11502.
Article PubMed PubMed Central CAS Google Scholar
Galvão-Lima LJ, Morais AH, Valentim RA, Barreto EJ. miRNAs as biomarkers for early cancer detection and their application in the development of new diagnostic tools. Biomed Eng Online. 2021;20(1):21.
Article PubMed PubMed Central Google Scholar
Yerukala Sathipati S, Tsai MJ, Shukla SK, Ho SY. Artificial intelligence-driven pan-cancer analysis reveals miRNA signatures for cancer stage prediction. HGG Adv. 2023;4(3):100190. https://doi.org/10.1016/j.xhgg.2023.100190.
Article PubMed PubMed Central CAS Google Scholar
Metcalf GA. MicroRNAs: circulating biomarkers for the early detection of imperceptible cancers via biosensor and machine-learning advances. Oncogene. 2024. https://doi.org/10.1038/s41388-024-03076-3.
Article PubMed PubMed Central Google Scholar
Afshar S, Warden E, Manochehri H, Saidijam M. Application of artificial neural network in miRNA biomarker selection and precise diagnosis of colorectal cancer. Iran Biomed J. 2019;23(3):175–83.
Article PubMed PubMed Central Google Scholar
Ng S, Masarone S, Watson D, Barnes MR. The benefits and pitfalls of machine learning for biomarker discovery. Cell Tissue Res. 2023;394(1):17–31.
Article PubMed PubMed Central Google Scholar
Movassagh M, Morton SU, Hehnly C, et al. mirTarRnaSeq: an R/Bioconductor statistical package for miRNA-mRNA target identification and interaction analysis. BMC Genomics. 2022;23:439. https://doi.org/10.1186/s12864-022-08558-w.
Article PubMed PubMed Central CAS Google Scholar
Li J, Ma X, Lin H, Zhao S, Li B, Huang Y. MHIF-MSEA: a novel model of miRNA set enrichment analysis based on multi-source heterogeneous information fusion. Front Genet. 2024;15:1375148.
Article PubMed PubMed Central CAS Google Scholar
Nunes, S., Bastos, R., Marinho, A. I., Vieira, R., Benício, I., de Noronha, M. A., & Tavares, N. M. (2024). Recent advances in the development and clinical application of miRNAs in infectious diseases. Non-coding RNA Research.
Iacomino G. miRNAs: the road from bench to bedside. Genes. 2023;14(2):314.
Article PubMed PubMed Central CAS Google Scholar
Azari H, Nazari E, Mohit R, Asadnia A, Maftooh M, Nassiri M, Avan A. Machine learning algorithms reveal potential miRNAs biomarkers in gastric cancer. Sci Rep. 2023;13(1):6147. https://doi.org/10.1038/s41598-023-32332-x.
Article PubMed PubMed Central CAS Google Scholar
Guo L-X, You Z-H, Wang L, Yu C-Q, Zhao B-W, Ren Z-H, Pan J. A novel circRNA-miRNA association prediction model based on structural deep neural network embedding. Brief Bioinform. 2022. https://doi.org/10.1093/bib/bbac391.
Article PubMed PubMed Central Google Scholar
Aghayousefi R, Hosseiniyan Khatibi SM, Zununi Vahed S, Bastami M, Pirmoradi S, Teshnehlab M. A diagnostic miRNA panel to detect recurrence of ovarian cancer through artificial intelligence approaches. J Cancer Res Clin Oncol. 2023;149(1):325–41. https://doi.org/10.1007/s00432-022-04468-2.
Article PubMed CAS Google Scholar
Albaradei S, Napolitano F, Thafar MA, Gojobori T, Essack M, Gao X. MetaCancer: a deep learning-based pan-cancer metastasis prediction model developed using multi-omics data. Comput Struct Biotechnol J. 2021;19:4404–11.
Article PubMed PubMed Central CAS Google Scholar
Yang S, Wang Y, Lin Y, Shao D, He K, Huang L. LncMirNet: predicting LncRNA–miRNA interaction based on deep learning of ribonucleic acid sequences. Molecules. 2020;25:4372.
Article PubMed PubMed Central CAS Google Scholar
Pirmoradi S, Teshnehlab M, Zarghami N, Sharifi A. A self-organizing deep neuro-fuzzy system approach for classification of kidney cancer subtypes using miRNA genomics data. Computer Methods Programs Biomed. 2021;206:106132.
Kanwal N, Al Samarrai OR, Al-Zaidi HMH, Mirzaei AR, Heidari MJ. Comprehensive analysis of microRNA (miRNA) in cancer cells. Cellular, Molecular and Biomedical Reports. 2023;3(2):89–97.
Luo Y, Peng L, Shan W, Sun M, Luo L, Liang W. Machine learning in the development of targeting microRNAs in human disease. Front Genet. 2023;13:1088189.
Article PubMed PubMed Central Google Scholar
Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2015;43(D1):D146–52.
Article PubMed CAS Google Scholar
Parveen A, Mustafa SH, Yadav P, Kumar A. Applications of machine learning in miRNA discovery and target prediction. Curr Genomics. 2019;20(8):537–44. https://doi.org/10.2174/1389202921666200106111813.
Article PubMed PubMed Central CAS Google Scholar
Hofestädt R, Schreiber F, Sommer B, Allmer J. Computational miRNomics—integrative approaches. J Integr Bioinform. 2017;14(1):20170012. https://doi.org/10.1515/jib-2017-0012.
Article PubMed PubMed Central Google Scholar
Medved, D., Nugues, P., & Nilsson, J. (2017, July). Predicting the outcome for patients in a heart transplantation queue using deep learning. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 74–77). IEEE.
Yousef M, Bakir-Gungor B, Jabeer A, Goy G, Qureshi R, Showe L. Recursive cluster elimination based rank function (SVM-RCE-R) implemented in KNIME. F1000Research. 2021;9:1255.
Article PubMed Central Google Scholar
Mei D, Liu Q. A new algorithm for analysis of MiRNA expression profiles—SVM-RFE-FKNN. J Imaging Sci Technol. 2021. https://doi.org/10.2352/J.IMAGINGSCI.TECHNOL.2021.65.3.030407.
Duan T, Kuang Z, Deng L. SVMMDR: prediction of miRNAs-drug resistance using support vector machines based on heterogeneous network. Front Oncol. 2022. https://doi.org/10.3389/fonc.2022.987609.
Article PubMed PubMed Central Google Scholar
Li Z, Huang X, Shi Y, Zou X, Li Z, Dai Z. Identification of MiRNA–disease associations based on information of multi-module and meta-path. Molecules. 2022. https://doi.org/10.3390/molecules27144443.
Article PubMed PubMed Central Google Scholar
Huang HY, Lin YC, Cui S, Huang Y, Tang Y, Xu J, Bao J, Li Y, Wen J, Zuo H, Wang W, Li J, Ni J, Ruan Y, Li L, Chen Y, Xie Y, Zhu Z, Cai X, Chen X, Huang HD. miRTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions. Nucl Acids Res. 2022. https://doi.org/10.1093/nar/gkab1079.
Article PubMed PubMed Central Google Scholar
Pian C, Mao S, Zhang G, Du J, Li F, Leung SY, Fan X. Discovering cancer-related miRNAs from miRNA-target interactions by support vector machines. Mol Ther Nucl Acids. 2020;19:1423–33. https://doi.org/10.1016/j.omtn.2020.01.019.
Qiu Min, et al. "Machine learning based network analysis determined clinically relevant miRNAs in breast cancer. Front Genet. 2020;11:615864.
Article PubMed PubMed Central CAS Google Scholar
Slimene I, Messaoudi I, Elloumi
Comments (0)