Dried Blood Spot Sampling in Protein and Peptide Bioanalysis: Optimism, Experience, and the Path Forward

Andersen IKL, Rosting C, Gjelstad A, Halvorsen TG (2018) Volumetric absorptive MicroSampling vs. other blood sampling materials in LC–MS-based protein analysis—preliminary investigations. J Pharm Biomed Anal 156:239–246. https://doi.org/10.1016/j.jpba.2018.04.036

Article  CAS  PubMed  Google Scholar 

Baillargeon KR, Brooks JC, Miljanic PR, Mace CR (2021) Patterned dried blood spot cards for the improved sampling of whole blood. ACS Meas Sci Au 2(1):31–38. https://doi.org/10.1021/ACSMEASURESCIAU.1C00031

Article  PubMed  PubMed Central  Google Scholar 

Björkesten J et al (2017) Stability of proteins in dried blood spot biobanks. Mol Cell Proteomics 16(7):1286–1296. https://doi.org/10.1074/MCP.RA117.000015

Article  PubMed  PubMed Central  Google Scholar 

Bloem K et al (2018) Capillary blood microsampling to determine serum biopharmaceutical concentration: Mitra® microsampler vs dried blood spot. Bioanalysis 10(11):815–823. https://doi.org/10.4155/bio-2018-0010

Article  CAS  PubMed  Google Scholar 

Bowen CL, Volpatti J, Cades J, Licea-Perez H, Evans CA (2012) Evaluation of glucuronide metabolite stability in dried blood spots. Bioanalysis 4(23):2823–2832. https://doi.org/10.4155/BIO.12.269

Article  CAS  PubMed  Google Scholar 

Chambers AG, Percy AJ, Yang J, Camenzind AG, Borchers CH (2013) Multiplexed quantitation of endogenous proteins in dried blood spots by multiple reaction monitoring—mass spectrometry. Mol Cell Proteomics 12(3):781–791. https://doi.org/10.1074/mcp.M112.022442

Article  CAS  PubMed  Google Scholar 

Chambers AG, Percy AJ, Yang J, Borchers CH (2015) Multiple reaction monitoring enables precise quantification of 97 proteins in dried blood spots. Mol Cell Proteomics 14(11):3094–3104. https://doi.org/10.1074/mcp.O115.049957

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cobb Z et al (2013) In-depth study of homogeneity in DBS using two different techniques: results from the EBF DBS-microsampling consortium. Bioanalysis 5(17):2161–2169. https://doi.org/10.4155/bio.13.171

Article  CAS  PubMed  Google Scholar 

Dameron E (2019) Invited product profile: the mitra microsampling device. Point Care 18(1):26–32. https://doi.org/10.1097/POC.0000000000000181

Article  Google Scholar 

de Kesel PMM, Sadones N, Capiau S, Lambert WE, Stove CP (2013) Hemato-critical issues in quantitative analysis of dried blood spots: challenges and solutions. Bioanalysis 5(16):2023–2041. https://doi.org/10.4155/BIO.13.156

Article  PubMed  Google Scholar 

Delahaye L, Heughebaert L, Lühr C, Lambrecht S, Stove CP (2021) Near-infrared-based hematocrit prediction of dried blood spots: an in-depth evaluation. Clin Chim Acta 523:239–246. https://doi.org/10.1016/J.CCA.2021.10.002

Article  CAS  PubMed  Google Scholar 

Demirev PA (2013) Dried blood spots: analysis and applications. Anal Chem 85(2):779–789. https://doi.org/10.1021/AC303205M

Article  CAS  PubMed  Google Scholar 

Denniff P, Spooner N (2014) Volumetric absorptive microsampling: a dried sample collection technique for quantitative bioanalysis. Anal Chem 86(16):8489–8495. https://doi.org/10.1021/AC5022562

Article  CAS  PubMed  Google Scholar 

Dupree EJ, Jayathirtha M, Yorkey H, Mihasan M, Petre BA, Darie CC (2020) A critical review of bottom-up proteomics: the good, the bad, and the future of this field. Proteomes 8(3):1–26. https://doi.org/10.3390/proteomes8030014

Article  CAS  Google Scholar 

Eshghi A et al (2020) Concentration determination of >200 proteins in dried blood spots for biomarker discovery and validation. Mol Cell Proteomics 19(3):540–553. https://doi.org/10.1074/MCP.TIR119.001820

Article  PubMed  PubMed Central  Google Scholar 

Ewles MF, Turpin PE, Goodwin L, Bakes DM (2011) Validation of a bioanalytical method for the quantification of a therapeutic peptide, ramoplanin, in human dried blood spots using LC-MS/MS. Biomed Chromatogr 25(9):995–1002. https://doi.org/10.1002/BMC.1555

Article  CAS  PubMed  Google Scholar 

Gerace E et al (2021) Detection of the synthetic peptide ipamorelin in dried blood spots by means of UHPLC-HRMS. Int J Mass Spectrom 462:116531. https://doi.org/10.1016/J.IJMS.2021.116531

Article  CAS  Google Scholar 

Han J et al (2018) Isotope-labeling derivatization with 3-nitrophenylhydrazine for LC/multiple-reaction monitoring-mass-spectrometry-based quantitation of carnitines in dried blood spots. Anal Chim Acta 1037:177–187. https://doi.org/10.1016/j.aca.2018.01.045

Article  CAS  PubMed  Google Scholar 

Heiland CE, Ericsson M, Pohanka A, Ekström L, Marchand A (2022) Optimizing detection of erythropoietin receptor agonists from dried blood spots for anti-doping application. Drug Test Anal 14(8):1377–1386. https://doi.org/10.1002/dta.3260

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hinchliffe E, Adaway JE, Keevil BG (2012) Simultaneous measurement of cyclosporin A and tacrolimus from dried blood spots by ultra high performance liquid chromatography tandem mass spectrometry. J Chromatogr B 883–884:102–107. https://doi.org/10.1016/j.jchromb.2011.05.016

Article  CAS  Google Scholar 

Hong W, Jeong SG, Shim G, Kim DY, Pack SP, Lee CS (2018) Improvement in the reproducibility of a Paper-based Analytical Device (PAD) using stable covalent binding between proteins and cellulose paper. Biotechnol Bioprocess Eng 23(6):686–692. https://doi.org/10.1007/s12257-018-0430-2

Article  CAS  PubMed  Google Scholar 

Ingels ASME, Lambert WE, Stove CP (2010) Determination of gamma-hydroxybutyric acid in dried blood spots using a simple GC-MS method with direct ‘on spot’ derivatization. Anal Bioanal Chem 398(5):2173–2182. https://doi.org/10.1007/s00216-010-4183-9

Article  CAS  PubMed  Google Scholar 

Katyayan KK, Hui YH (2019) An evaluation of metabolite profiling of six drugs using dried blood spot. Xenobiotica 49(12):1458–1469. https://doi.org/10.1080/00498254.2019.1572938

Article  CAS  PubMed  Google Scholar 

Kehler JR, Bowen CL, Boram SL, Evans CA (2010) Application of DBS for quantitative assessment of the peptide Exendin-4; comparison of plasma and DBS method by UHPLC–MS/MS. Bioanalysis 2(8):1461–1468. https://doi.org/10.4155/BIO.10.108

Article  CAS  PubMed  Google Scholar 

Kehler J, Akella N, Citerone D, Szapacs M (2011) Application of DBS for the quantitative assessment of a protein biologic using on-card digestion LC–MS/MS or immunoassay. Bioanalysis 3(20):2283–2290. https://doi.org/10.4155/BIO.11.231

Article  CAS  PubMed  Google Scholar 

Kim UJ, Lee YR, Kang TH, Choi JW, Kimura S, Wada M (2017) Protein adsorption of dialdehyde cellulose-crosslinked chitosan with high amino group contents. Carbohydr Polym 163:34–42. https://doi.org/10.1016/j.carbpol.2017.01.052

Article  CAS  PubMed  Google Scholar 

Kip AE, Kiers KC, Rosing H, Schellens JHM, Beijnen JH, Dorlo TPC (2017) Volumetric absorptive microsampling (VAMS) as an alternative to conventional dried blood spots in the quantification of miltefosine in dried blood samples. J Pharm Biomed Anal 135:160–166. https://doi.org/10.1016/J.JPBA.2016.12.012

Article  CAS  PubMed  Google Scholar 

Koster RA et al (2015) The performance of five different dried blood spot cards for the analysis of six immunosuppressants. Bioanalysis 7(10):1225–1235. https://doi.org/10.4155/BIO.15.63

Article  CAS  PubMed  Google Scholar 

Lange T, Walpurgis K, Thomas A, Geyer H, Thevis M (2019) Development of two complementary LC-HRMS methods for analyzing sotatercept in dried blood spots for doping controls. Bioanalysis 11(10):923–940. https://doi.org/10.4155/bio-2018-0313

Article  CAS  PubMed  Google Scholar 

Lange T, Thomas A, Walpurgis K, Thevis M (2020) Fully automated dried blood spot sample preparation enables the detection of lower molecular mass peptide and non-peptide doping agents by means of LC-HRMS. Anal Bioanal Chem 412(15):3765–3777. https://doi.org/10.1007/s00216-020-02634-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laskay ÜA, Lobas AA, Srzentić K, Gorshkov MV, Tsybin YO (2013) Proteome digestion specificity analysis for rational design of extended bottom-up and middle-down proteomics experiments. J Proteome Res 12(12):5558–5569. https://doi.org/10.1021/pr400522h

Article  CAS  PubMed  Google Scholar 

Lawson G, Cocks E, Tanna S (2012) Quantitative determination of atenolol in dried blood spot samples by LC-HRMS: a potential method for assessing medication adherence. J Chromatogr B 897:72–79. https://doi.org/10.1016/j.jchromb.2012.04.013

Article  CAS  Google Scholar 

Lehmann S, Delaby C, Vialaret J, Ducos J, Hirtz C (2013) Current and future use of ‘dried blood spot’ analyses in clinical chemistry. Clin Chem Lab Med 51(10):1897–1909. https://doi.org/10.1515/CCLM-2013-0228

Article  CAS  PubMed  Google Scholar 

Lenk G, Hansson J, Beck O, Roxhed N (2015) The effect of drying on the homogeneity of DBS. Bioanalysis 7(16):1977–1985. https://doi.org/10.4155/BIO.15.135

Comments (0)

No login
gif