Arastéh K, Baenkler H, Bieber C. Innere Medizin [Internet]. Reihe D, editor. Innere Medizinpie. Stuttgart: Georg Thieme Verlag; 2018. p. 131–155. Available from: https://eref.thieme.de/10.1055/b-005-145255.
Coffey S, Roberts-Thomson R, Brown A, Carapetis J, Chen M, Enriquez-Sarano M, et al. Global epidemiology of valvular heart disease. Nat Rev Cardiol. 2021;18(12):853–64.
Fernandez Esmerats J, Villa-Roel N, Kumar S, Gu L, Salim MT, Ohh M, et al. Disturbed flow increases UBE2C (Ubiquitin E2 Ligase C) via Loss of miR-483-3p, inducing aortic valve calcification by the pVHL (von Hippel-Lindau Protein) and HIF-1α (Hypoxia-Inducible Factor-1α) pathway in endothelial cells. Arterioscler Thromb Vasc Biol. 2019;39(3):467–81.
Rathan S, Ankeny CJ, Arjunon S, Ferdous Z, Kumar S, Fernandez Esmerats J, et al. Identification of side- and shear-dependent microRNAs regulating porcine aortic valve pathogenesis. Sci Rep. 2016;6:1–16. https://doi.org/10.1038/srep25397.
Leopold JA. Cellular mechanisms of aortic valve calcification. Circ Cardiovasc Interv. 2012;5(4):605–14.
Hsu CPD, Hutcheson JD, Ramaswamy S. Oscillatory fluid-induced mechanobiology in heart valves with parallels to the vasculature. Vasc Biol. 2020;2(1):R59-71.
Ohukainen P, Ruskoaho H, Rysa J. Cellular mechanisms of valvular thickening in early and intermediate calcific aortic valve disease. Curr Cardiol Rev. 2018;14(4):264–71.
Chen JH, Simmons CA. Cell-matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues. Circ Res. 2011;108(12):1510–24.
Rutkovskiy A, Malashicheva A, Sullivan G, Bogdanova M, Kostareva A, Stensløkken KO, et al. Valve interstitial cells: the key to understanding the pathophysiology of heart valve calcification. J Am Heart Assoc. 2017;6(9):1–24.
Alushi B, Curini L, Christopher MR, Grubitzch H, Landmesser U, Amedei A, et al. Calcific aortic valve disease-natural history and future therapeutic strategies. Front Pharmacol. 2020;11(May):1–12.
Blaser MC, Kraler S, Luscher TF, Aikawa E. Multi-omics approaches to define calcific aortic valve disease pathogenesis. Circ Res. 2021;128:1371–97.
Akat K, Borggrefe M, Kaden JJ. Aortic valve calcification: basic science to clinical practice. Heart. 2009;95(8):616–23.
Zheng KH, Tzolos E, Dweck MR. Pathophysiology of aortic stenosis and future perspectives for medical therapy. Cardiol Clin. 2020;38(1):1–12. https://doi.org/10.1016/j.ccl.2019.09.010.
Hutcheson JD, Aikawa E, Merryman WD. Potential drug targets for calcific aortic valve disease. Nat Rev Cardiol. 2014;11(4):218–31. Available from: http://www.nature.com/articles/nrcardio.2014.1.
Bowler MA, Merryman WD. In vitro models of aortic valve calcification: Solidifying a system. Cardiovasc Pathol. 2015;24(1):1–10. https://doi.org/10.1016/j.carpath.2014.08.003.
Chester AH, Grande-Allen KJ. Which biological properties of heart valves are relevant to tissue engineering? Front Cardiovasc Med. 2020;7:63.
Dweck MR, Boon NA, Newby DE. Calcific aortic stenosis: a disease of the valve and the myocardium. j am coll cardiol. 2012;60(19):1854–63. https://doi.org/10.1016/j.jacc.2012.02.093.
Kostyunin AE, Yuzhalin AE, Rezvova MA, Ovcharenko EA, Glushkova TV, Kutikhin AG. Degeneration of bioprosthetic heart valves: update 2020. J Am Heart Assoc. 2020;9(19):1–19.
Kostyunin AE, Yuzhalin AE, Ovcharenko EA, Kutikhin AG. Development of calcific aortic valve disease: do we know enough for new clinical trials? J Mol Cell Cardiol. 2019;132(May):189–209.
Iop L. Toward the effective bioengineering of a pathological tissue for cardiovascular disease modeling: old strategies and new frontiers for prevention, diagnosis, and therapy. Front Cardiovasc Med. 2021;7(March):1–22.
Chu Y, Lund DD, Doshi H, Keen HL, Knudtson KL, Funk ND, et al. Fibrotic aortic valve stenosis in hypercholesterolemic/hypertensive mice. Arterioscler Thromb Vasc Biol. 2016;36(3):466–74.
LaHaye S, Majumdar U, Yasuhara J, Koenig SN, Matos-Nieves A, Kumar R, et al. Developmental origins for semilunar valve stenosis identified in mice harboring congenital heart disease-associated GATA4 mutation. DMM Dis Model Mech. 2019;12(6):dmm036764.
Miller JD, Weiss RM, Heistad DD. Calcific aortic valve stenosis: Methods, models, and mechanisms. Circ Res. 2011;108(11):1392–412.
Tsang HG, Cui L, Farquharson C, Corcoran BM, Summers KM, Macrae VE. Exploiting novel valve interstitial cell lines to study calcific aortic valve disease. Mol Med Rep. 2018;17(2):2100–6.
Alonso JL, Goldmann WH. Cellular mechanotransduction. AIMS Biophys. 2016;3(1):50–62.
Tsang HG, Rashdan NA, Whitelaw CBA, Corcoran BM, Summers KM, MacRae VE. Large animal models of cardiovascular disease. Cell Biochem Funct. 2016;34(3):113–32.
Jannasch A, Schnabel C, Galli R, Faak S, Büttner P, Dittfeld C, et al. Optical coherence tomography and multiphoton microscopy offer new options for the quantification of fibrotic aortic valve disease in ApoE−/− mice. Sci Rep. 2021;11(1):1–14. https://doi.org/10.1038/s41598-021-85142-4.
Sider KL, Blaser MC, Simmons CA. Animal models of calcific aortic valve disease. Int J Inflam. 2011;2011(Ldl):1–18.
Guerraty MA, Grant GR, Karanian JW, Chiesa OA, Pritchard WF, Davies PF. Hypercholesterolemia induces side-specific phenotypic changes and peroxisome proliferator-activated receptor-γ pathway activation in swine aortic valve endothelium. Arterioscler Thromb Vasc Biol. 2010;30(2):225–31. Available from: https://www.ahajournals.org/doi/10.1161/ATVBAHA.109.198549.
Goody PR, Hosen MR, Christmann D, Niepmann ST, Zietzer A, Adam M, et al. Aortic valve stenosis: from basic mechanisms to novel therapeutic targets. Arterioscler Thromb Vasc Biol. 2020;40:885–900.
Rock CA, Han L, Doehring TC. Complex collagen fiber and membrane morphologies of the whole porcine aortic valve. PLoS One. 2014;9(1):1–9.
Sim EKW, Muskawad S, Lim CS, Yeo JH, Lim KH, Grignani RT, et al. Comparison of human and porcine aortic valves. Clin Anat. 2003;16(3):193–6.
Winkelkotte M, Schmieder F, Behrens S, Salminger D, Jannasch A, Matschke K, et al. Micro-Physiological-Systems enable investigation of hypoxia induced pathological processes in human aortic valve cells and tissues. Curr Dir Biomed Eng. 2021;7(2):45–8.
Amrollahi P, Tayebi L. Bioreactors for heart valve tissue engineering: a review. J Chem Technol Biotechnol. 2016;91(4):847–56.
Niazy N, Barth M, Selig JI, Feichtner S, Shakiba B, Candan A, et al. Degeneration of aortic valves in a bioreactor system with pulsatile flow. Biomedicines. 2021;9(5):1–16.
Sapp MC, Krishnamurthy VK, Puperi BS, Bhatnagar S, Fatora G, Mutyala N, et al. Differential cell-matrix responses in hypoxia-stimulated aortic versus mitral valves. J R Soc Interface. 2016;13(125):20160449.
Sun L, Rajamannan NM, Sucosky P. Design and validation of a novel bioreactor to subject aortic valve leaflets to side-specific shear stress. Ann Biomed Eng. 2011;39(8):2174–85.
Sun L, Rajamannan NM, Sucosky P. Defining the role of fluid shear stress in the expression of early signaling markers for calcific aortic valve disease. PLoS One. 2013;8(12):e84433.
Zabirnyk A, Perez MDM, Blasco M, Stensløkken KO, Ferrer MD, Salcedo C, et al. A novel ex vivo model of aortic valve calcification a preliminary report. Front Pharmacol. 2020;11:1–7.
Yap CH, Saikrishnan N, Yoganathan AP. Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet. Biomech Model Mechanobiol. 2012;11(1–2):231–44.
Weber A, Pfaff M, Schöttler F, Schmidt V, Lichtenberg A, Akhyari P. Reproducible in vitro tissue culture model to study basic mechanisms of calcific aortic valve disease: Comparative analysis to valvular interstitials cells. Biomedicines. 2021;9(5):474.
Mongkoldhumrongkul N, Latif N, Yacoub MH, Chester AH. Effect of side-specific valvular shear stress on the content of extracellular matrix in aortic valves. Cardiovasc Eng Technol. 2018;9(2):151–7.
Tandon I, Ozkizilcik A, Ravishankar P, Balachandran K. Aortic valve cell microenvironment: considerations for developing a valve-on-chip. Biophys Rev. 2021;2(4):041303.
Maeda K, Ma X, Hanley FL, Riemer RK. Critical role of coaptive strain in aortic valve leaflet homeostasis: use of a novel flow culture bioreactor to explore heart valve mechanobiology. J Am Heart Assoc. 2016;5(8):e003506.
Rajamannan NM, Moura LM, Best P. Bench to bedside defining calcific aortic valve disease: osteocardiology. Expert Rev Cardiovasc Ther. 2020;18(5):239–47. https://doi.org/10.1080/14779072.2020.1757431.
Balachandran K, Sucosky P, Jo H, Yoganathan AP. Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: Implications for degenerative aortic valve disease. Am J Physiol - Hear Circ Physiol. 2009;296(3):756–64.
Bogdanova M, Zabirnyk A, Malashicheva A, Semenova D, Kvitting JPE, Kaljusto ML, et al. Models and techniques to study aortic valve calcification in vitro, ex vivo and in vivo. An overview. Front Pharmacol. 2022;13:1–25.
Behrens S, Schmieder F, Polk C, Schöps P. PDMS free modular plug and play construction kit for the development of micro-physiological systems. Proc. SPIE 11637, Microfluidics, BioMEMS, and Medical Microsystems XIX, 116370O. 2021;20:10. https://doi.org/10.1117/12.2585203.
Kolanowski TJ, Busek M, Schubert M, Dmitrieva A, Binnewerg B, Pöche J, et al. Enhanced structural maturation of human induced pluripotent stem cell-derived cardiomyocytes under a controlled microenvironment in a microfluidic system. Acta Biomater. 2020;102:273–86.
Dittfeld C, Winkelkotte M, Behrens S, Schmieder F, Jannasch A, Matschke K, et al. Establishment of a resazurin-based aortic valve tissue viability assay for dynamic culture in a microphysiological system. Küpper J-H, Krüger-Genge A, Jung F, editors. Clin Hemorheol Microcirc [Internet]. 2021;79(1):167–78. Available from: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/CH-219112.
Gantenbein-Ritter B, Potier E, Zeiter S, Van Der Werf M, Sprecher CM, Ito K. Accuracy of three techniques to determine cell viability in 3D tissues or scaffolds. Tissue Eng - Part C Methods. 2008;14(4):353–8. Available from: www.liebertpub.com.
Comments (0)