E4orf1 improves adipose tissue-specific metabolic risk factors and indicators of cognition function in a mouse model of Alzheimer’s disease

Gross B, Pawlak M, Lefebvre P, Staels B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat Rev Endocrinol. 2017;13:36–49.

Article  CAS  PubMed  Google Scholar 

Kiliaan AJ, Arnoldussen IAC, Gustafson DR. Adipokines: a link between obesity and dementia? Lancet Neurol. 2014;13:913–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xia X, Jiang Q, McDermott J, Han JJ. Aging and Alzheimer’s disease: comparison and associations from molecular to system level. Aging Cell. 2018;17:e12802.

Article  PubMed  PubMed Central  Google Scholar 

Misiak B, Leszek J, Kiejna A. Metabolic syndrome, mild cognitive impairment and Alzheimer’s disease—the emerging role of systemic low-grade inflammation and adiposity. Brain Res Bull. 2012;89:144–9.

Article  CAS  PubMed  Google Scholar 

Pichiah PBT, Sankarganesh D, Arunachalam S, Achiraman S. Adipose-derived molecules–untouched horizons in Alzheimer’s disease biology. Front Aging Neurosci. 2020;12:12–7.

Article  Google Scholar 

Luchsinger JA, Gustafson DR. Adiposity, type 2 diabetes, and Alzheimer’s disease. J Alzheimers Dis. 2009;16:693–704.

Article  PubMed  PubMed Central  Google Scholar 

Pedditizi E, Peters R, Beckett N. The risk of overweight/obesity in mid-life and late life for the development of dementia: a systematic review and meta-analysis of longitudinal studies. Age Ageing. 2016;45:14–21.

Article  Google Scholar 

Luchsinger JA, Tang MX, Shea S, Mayeux R. Hyperinsulinemia and risk of Alzheimer disease. Neurology 2004;63:1187–92.

Article  PubMed  Google Scholar 

Amato A, Caldara G-F, Nuzzo D, Baldassano S, Picone P, Rizzo M, et al. NAFLD and atherosclerosis are prevented by a natural dietary supplement containing curcumin, silymarin, guggul, chlorogenic acid and inulin in mice fed a high-fat diet. Nutrients 2017;9:492.

Article  PubMed  PubMed Central  Google Scholar 

Kim D-G, Krenz A, Toussaint LE, Maurer KJ, Robinson S-A, Yan A, et al. Non-alcoholic fatty liver disease induces signs of Alzheimer’s disease (AD) in wild-type mice and accelerates pathological signs of AD in an AD model. J Neuroinflammation. 2016;13:1–18.

Article  PubMed  PubMed Central  Google Scholar 

Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. 2012;69:29–38.

Article  PubMed  Google Scholar 

Gold M, Alderton C, Zvartau-Hind M, Egginton S, Saunders AM, Irizarry M, et al. Rosiglitazone monotherapy in mild-to-moderate Alzheimer’s disease: results from a randomized, double-blind, placebo-controlled phase III study. Dement Geriatr Cogn Disord. 2010;30:131–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Picone P, Nuzzo D, Caruana L, Messina E, Barera A, Vasto S, et al. Metformin increases APP expression and processing via oxidative stress, mitochondrial dysfunction and NF-kappaB activation: Use of insulin to attenuate metformin’s effect. Biochim Biophys Acta. 2015;1853:1046–59.

Article  CAS  PubMed  Google Scholar 

Kim KS, Lee BW. Beneficial effect of anti-diabetic drugs for nonalcoholic fatty liver disease. Clin Mol Hepatol. 2020;26:430–43.

Article  PubMed  PubMed Central  Google Scholar 

Craft S, Raman R, Chow TW, Rafii MS, Sun CK, Rissman RA, et al. Safety, efficacy, and feasibility of intranasal insulin for the treatment of mild cognitive impairment and Alzheimer disease dementia: a randomized clinical trial. JAMA Neurol. 2020;77:1099–109.

Article  PubMed  Google Scholar 

Dhurandhar EJ, Dubuisson O, Mashtalir N, Krishnapuram R, Hegde V, Dhurandhar NV. E4orf1: a novel ligand that improves glucose disposal in cell culture. PLoS ONE. 2011;6:e23394.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kusminski CM, Gallardo-Montejano VI, Wang ZV, Hegde V, Bickel PE, Dhurandhar NV, et al. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte. Mol Metab. 2015;4:653–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McMurphy TB, Huang W, Xiao R, Liu X, Dhurandhar NV, Cao L. Hepatic expression of adenovirus 36 E4ORF1 improves glycemic control and promotes glucose metabolism through AKT activation. Diabetes 2017;66:358–71.

Article  CAS  PubMed  Google Scholar 

Shastri AA, Hegde V, Peddibhotla S, Feizy Z, Dhurandhar NV. E4orf1: a protein for enhancing glucose uptake despite impaired proximal insulin signaling. PLoS ONE. 2018;13:e0208427.

Article  PubMed  PubMed Central  Google Scholar 

Akheruzzaman M, Hegde V, Shin AC, Dhurandhar NV. Reducing endogenous insulin is linked with protection against hepatic steatosis in mice. Nutr Diabetes. 2020;10:11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mostofinejad Z, Akheruzzaman M, Abu Bakkar Siddik M, Patkar P, Dhurandhar NV, Hegde V. Antidiabetic E4orf1 protein prevents hepatic steatosis and reduces markers of aging-related cellular damage in high fat fed older mice. BMJ Open Diabetes Res Care. 2021;9:e002096.

Article  PubMed  PubMed Central  Google Scholar 

Macklin L, Griffith CM, Cai Y, Rose GM, Yan XX, Patrylo PR. Glucose tolerance and insulin sensitivity are impaired in APP/PS1 transgenic mice prior to amyloid plaque pathogenesis and cognitive decline. Exp Gerontol. 2017;88:9–18.

Article  CAS  PubMed  Google Scholar 

Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1:848–58.

Article  PubMed  PubMed Central  Google Scholar 

Delacre M, Lakens D, Leys C. Why psychologists should by default use Welch’s t-test instead of Student’s t-test. Int Rev Soc Psychol. 2017;30:92–101.

Article  Google Scholar 

Abreu-Vieira G, Fischer AW, Mattsson C, de Jong JMA, Shabalina IG, Rydén M, et al. Cidea improves the metabolic profile through expansion of adipose tissue. Nat Commun. 2015;6:7433.

Article  CAS  PubMed  Google Scholar 

Zou Y, Wang Y-N, Ma H, He Z-H, Tang Y, Guo L, et al. SCD1 promotes lipid mobilization in subcutaneous white adipose tissue. J lipid Res. 2020;61:1589–604.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mann JP, Tabara LC, Alvarez-Guaita A, Dong L, Haider A, Lim K, et al. Loss of Mfn1 but not Mfn2 enhances adipogenesis. bioRxiv 2022.11.04.515167. https://doi.org/10.1101/2022.11.04.515167.

Hildreth KL, Van Pelt RE, Schwartz RS. Obesity, insulin resistance, and Alzheimer’s disease. Obesity. 2012;20:1549–57.

Article  CAS  PubMed  Google Scholar 

Gupta A, Singh A, Deka R, Gupta R, Jha R. To investigate role of glycosylated hemoglobin (Hba1c) as a biomarker for prediction of dementia and cognitive dysfunction in type 2 diabetic patients. J Alzheimers Dis Parkinsonism. 2018;8:437.

Article  Google Scholar 

Fruebis J, Tsao T-S, Javorschi S, Ebbets-Reed D, Erickson MRS, Yen FT, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA. 2001;98:2005–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puri V, Ranjit S, Konda S, Nicoloro SMC, Straubhaar J, Chawla A, et al. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci USA. 2008;105:7833–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gholizadeh E, Khaleghian A, Najafgholi Seyfi D, Karbalaei R. Showing NAFLD, as a key connector disease between Alzheimer’s disease and diabetes via analysis of systems biology. Gastroenterol Hepatol Bed Bench. 2020;13:S89–s97.

PubMed  PubMed Central  Google Scholar 

Swerdlow RH. Mitochondria and mitochondrial cascades in Alzheimer’s disease. J Alzheimers Dis. 2018;62:1403–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta. 2014;1842:1240–7.

Article  CAS  PubMed  Google Scholar 

Sheng B, Wang X, Su B, Lee HG, Casadesus G, Perry G, et al. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem. 2012;120:419–29.

Article  CAS  PubMed  Google Scholar 

Manczak M, Calkins MJ, Reddy PH. Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum Mol Genet. 2011;20:2495–509.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tutukova S, Tarabykin V, Hernandez-Miranda LR. The role of neurod genes in brain development, function, and disease. Front Mol Neurosci. 2021;14:662774.

Article  CAS 

Comments (0)

No login
gif